TITLF	Articulated Multimedia Physics" Lesson 10, Circular Motion.
INS TITUTTM	New York Inst. of Tech., Old Westbury.
PUR DATE	[65]
NOTE	164 p .
EDRS PRICE	MF-\$0.65 HC-\$6.58
DESCKIPTORS	*College Science; Computer assisted Instruction;
	*Instructional Materials; Mathemainical spplications
	*Mechanics (Physics) ; *Multimedia Instruction;
	Physics; Science Education; *Study Guides;
	Supplementary Textbooks

ABSTRACT

As the tenth lesson of the articulated Multimedia. Physics Course, instructional materials relating to circular motion are presented in this study guide. The topics are concerned with instantaneous velocity, centripetal force, centrifugal force, and sate?lite paths. The content is arranged in scrambled form, and the use of matrix transparencies is required for students to control learning activities. Students are asked to use magnetic tape playback, instructional tapes, and single concept forms at the appropriate place in conjunction with the worksheet. Included are a homework problem set and illustrations for explanation purposes. Related documents are SE 015963 through SE 015 977. (CC)

σ

 ARTICULATED

 ARTICULATED} MULTIMEDIA
PHYSICS

LESSON (10)

IMPORTANT: Your attention is again called to the fact that this is not an crdinary book. It's pages are scrambled in such a way that it cannot be read on studied by turning the pages in the ordinary sequence. To serve properly as the guiding element in the Articulated Multimedia Physics Course, this Study Guide must be used in conjunction with a Proeram Control equipped with the appropriate matrix transparency for this tosson. In addition, every Lesson requires the availability of a magnetic tape playback and the appropriate cartridge of instructionaz tape to be used, as simnaled by the Study Guide, in conjurction with the Worksheets that appear in the blue appendix section at the end of the book. Many of the lesson Study Guides also call for viewing a single concept film at an indicated place in the work. These films are individually viewed by the student using a special projector and screen; arrangements are made and instruciions are given for synchrorizing the tape playback and the film in each case.

COPYRIGHT ACKNOWLEDGEMENT

Material on white sheets: Copyright 1965 by Welch Scientific Company. All rights reserved. Printed in U.S.A. Grateful aoknowledgement is made to the holder of the copyright for the use of this material in this validation version of the study Guide.

Material on colored sheets: Copyright 1967 by tre New York Institute of Technology. All rights reserved. Printed in U.S.A.

PERMISSION TO REPRODUCE THIS COPY Rigmted material has been granted gy

Sargent-Welch
Edward F. Ewen
to Eric and organizations operating UNDER AGREEMENTS WITH THE NETIONAL IN. Stitute of education. further repro. Quction outside the eric system re. QUIRES PERMISSION OF THE COPYRIGHT (WNEA "

NEW YORK INSTITUTE OF TECHNOLOGY
 01d Westbury, Long Island New York, N.Y.

ARTICULATED VULTIMEDIA PHYSICS

Lesson Number 10

CIRCULAR MOTION

Let your imagination carry you back through more than 2,000 years of man's history, back to Plato in the Greece of the fourth century B.C. This great philosopher was a teacher whome we can imagine speaking to his pupils in a classroom not too different from yours. We must paraphrase his lecture because there is no documentation for his exact words: "The stais," he begins, "eternal, divine, and unchanging lights in the heavens, move around the Earth once each day, as we can see, in that eminently perfect patk, the circle. The planets, however, seem to follow erratic paths; they wander through the sky as the year progresses. Yet they, too, are heavenly and divine; they, too, must follow the perfect path of heaven, the circle. And so I set forth to you a problem: determine what uniform and ordered circular motions must be assumed for each of the planets to account for its apparent irregular wanderings."

We give you Plato in our introduction to this lesson because he and his successors in later times and other places exemplify man's early preoccupation with circular motion in his endeavor to explain celestial events without violating eithor of his two basic faiths: his belief in the diviniry and perfection of the circle and his conviction that the chaotic, tumbling motion of the heavenlv spheres could be reduced to simple, ordered, logicai systems.

Please go on to page 2.

The seeds or many of our modern scientifie methods lay in the fextile thoughs of the amcient Gxeks. Despite supexstition, the study of circular motion the these anctert stmes as applied to a sky which seemed so neau has slowiy led to gur understanding of the prasent-day unverse:
: fo The snars do not move about the Earth fnctrcles. 2. The planers do not move abost the Eaxth or the sum in circles.
3. The oxbir of che moon is not a cipcle.

In shoxt, thexe is nothing divine or eternal about the circle as plate thpught: The circle tis apecial kind of geometric figure with special properaies; but che same may be said of the ellipse, the square, or the twhengies, Nevertheless, planetayy and satellite orbits are smooth, cised m. uryes which ofest closely appoximate circles. This fesson will avex. movion in curfed paths.

As th happens; circefar motion is more readily aralyzed than ellipticat, sx hyperbolle, or payabolic norion。 Many familiar objeces move fn perfect citcles: whe wheels of your car, the edge of the record on your phono playback, the tub in your washing machine, the blades on your eiectric fan.

* Weask, then, what makes circulat motion different from motion along 3. straight linef Does weluciny have the same meaning for both motions": How does accelexation differ in circuler movion? What forees axe present in rotating systemst These and other reiaced quescions will be answered inchis lesson.

Please go on to page 3.

20

Somewhere in your reading or in grade school you have met the notion of centrifugal force. You whirl a stone around in a circle at the end oi a string in apparent defiance of gravity. What keeps the string raut? Why doesn't the stone fall when it reaches the top of its vertical circulay path? "Why, it's obvious," you say. "When a body is whirled around, chere is an outward force acting on it. In this case, the force is lazge enough to counteract the downward pull of gravity. That's why we call rhis force centrifugal force; the word means 'flying away from the center.' That's exactly what the stone would do if you cut the string. It would fiy outward immediately dire to centrifugal force."

Consider another manifestation of centrifugal force. When the car in which you are a passenger sudden 1 y rounds a sharp rurn, you often find yourself sliding along the seat toward the outside of the curve, You wexe stationary with respect to the car before you began to siide; hence your body is accelexated. Being well-versed in Newton's laws of motion, you know that a force must have acted on your body to cause the outward acceleration; you can even write a mathematical equation (F ma) to prove the existence of this outward-giting force. You conclude that the same force that acted on the string--centrifigal force--is also responsible for your sliding along the seat of the autctuobile.

Please go on to page 4.

The concept of centrifugal force is quite stmple and clear-cut, isn ${ }^{-1}$
it? It explains so many things in a forthright, uncomplicated manner. However, explamarions of effects in rotaring systems based upon cencrfugal force have one deffect: THEY ARE INCORRECT: THERE IS NO SUCH FORCE AS CENTRIFUGAL EORCE ACTING ON THE STONE ON THE STRTNG OR ON YOUR BODY IN THE CAR: For more years than we care to mention; textbooks and reachers have been efther implying or actually dispensing false fnformation on the subyect

So, when a belief like this, cherished over the years, is shathered, we begtn to view other commonly accepted ldeas with susplcion. This is exactly the atwitude we shouid like to see develop in you. Very often in physfes, "self-ewident truths" turn out to be the widest kind of untruths! The answer is, clearly, that there is no such thing as a self-evident trutho In, science, a so-salled fact of today may vexy well turn out co be the faxy cale of somorxow.

Centrifugal force as an explanation for the behavior of bodies in dicular motion is just such a falry tale. If abandoning the simplictey or the centrifugal rorce concept disturbs you, don't fret. The true explanation of the taut etring of the whirling stone, of the slide along the automobile seat, and of the teaxing rension you feel in your arms when you are the fast man on an lee-skacing "whip" is so much more logical and straight-forwara, that once you have grasped it, you will never again regrec the loss of: "sentrifugat" force.

Good luck in the work ahead. We know you will find it interesting.

Please tura to page 154 in the blue appendix.

There are places in deep space which are so remote from the nearest star or planet that the effects of gravitation in these areas are negligible。 We can imagine a block of meteoric matter moving through such a space, having been cast of an exploding star thousands of years ago. No forces of any kind act upon it. It is a completely free agent unaffected by gravitation, electrical forces, or magnetic forces.

In the absence of force, the meteor is in dynamic equilibrium. Its motion is accurately described by Newton's First Law.

Just what kind of motion would the meteor have?
(1)

A Uniformiy accelerated morion.
B Uniform speed; variable in direction.
C Uniform velocity.

YOUR ANSWER --- B

Refer ro Figure 15 on page 46. You can't say that DC is the radius of the cixcle of rotati, shown in the figure. This line segment is too iong; Pcimt n is oubside the etrcie. If you used DC as a radius ro draw a cixale anourd C, you wousd f. in. is circle mbch larger than the one in the figuse.

Piease Letuin co page 46 and choose a better answer.

YOUR ANSWER --- C

One of the conversions is incorrect. Perhaps it will help if we xemind you that there, 2100 cm in one meter and $1,000 \mathrm{~g}$ in one kilogram.

When you find this single error, the list will then be correct. Locare the error; then return to page 56 and choose the right list of values.

ZOUR ANSWER --- C

You are correct. As the instant of removal of the centriperai iosct, the paxicle at once is restored to a state of dynamic equilibrium, since at this instant the motion is tangent to the circle, the particle continues so move along the ine of $\overrightarrow{v_{2}}$.

Hexeaiter in this lesson, we will use the symbol \vec{v} to reíer to the "instantaneous veiocity" of the rotating particle. Since the dixection or mocion will be sonstantly changing, we will refer to "speed" of the pazticle, The ingrancaneous velocity of which is \vec{v}.

Now iet's imagine rhat the centripetal force is appised to the partisie wrh consters magnitude, continuously changing its direction so that ics mecto constanty poincs towayd the cencex. The path of che pataine wad yrieo be a pertecc \qquad .

What's the miesing word? Write it; then check your thinking by tuanime to page 9.

CURRECT ANSWER: If the magnitude of the centripetal force is constant and always directed toward the center, the path of the particle will then be a perfect circle.

In Figure 9, the symbol F_{c} is used for centripetal force at every point in the path of the particle and v is used for each instanta eous: velocity because the speed of the particle is constant despite the changing direction. The radius of this circle is symbolized by r and we'll call the mass of the particle m.

Figure 9
Next we turn our attention to the magnitude of the centripetal forie, F. Can the required centripetal force F be determined for any fiven set of conditions where the mass m, the instantaneous velocity v, and the radius of the circle r are determinable? By "required" we mean: can we find the magnitude of the centripetal force F_{c} needed to keep a particle of mass m moving at a speed v in a circle of radius r ? The answer is yes. An equition can be derived which relates F to m, v, and r. The derivation is difficult, however, and beyond the level of our course. Rather than duzden you with the formal derivation, we're going to obtain the equation with the assistance of our knowledge of units and unit checks.

NOTEBOOK ENTRY
Lesson 10
2. Centripetal Force
(a) A particle moving in a circle with constant speed is acted upon by a force of constant magnitude acting toward the center of the circle. This is centripetal force. (Copy Figure 9 into your notebook.)

To obtain the relatiraship between F_{c} on the one hand and m, v, and r on the other, we'1l investigate the effect of each of the latter on the torce needed to maintain circular motion; but we'll handle chem separaceiy. To do this, we'li try to make use of your personal observations and experiences.

We shall begin by studying the relationship between F_{c} and V. Imagine that you are holding a on d length of string between your fingers, having fixst wound a few curns c around your forefinger to prevent inadvertent slip. Attached to the strang is a "particle," (perhaps a rennis bail). You whirl the particle in a horizontal circle at a relatively siow speed above youx head and note the amount of centripetal force (F_{c}) you have to exert :0 keep it in this circle. Now assume that you increase the speed of whiriing to pwiee or three times its former value and again note the magntiude or the requized centripetal force. Select one of the statements beicw whiuh fits your observations of what occurs.
(8)

A As the speed increases, the required centripetal force remains the same.
B As the speed increases, the required centripetal force decreases.
C As the speed increases, the required centriperal force increases.

YOUR ANSWER --- B

Your algebra is faulty. Remember, dividing a Eraction like mv ${ }^{2}$ in by a whole number such as m is the equivalent of multiplying the fraction by the reciprocal of the denominator.

$$
a_{c}=\frac{m v^{2}}{r} \times \frac{1}{m}
$$

So you can see that the answer you chose is not correct.

Please return to page 27 and select the alternative answer.

```
YOUR ANSWER --- D
```

There is actually nothing wrong with this answer from a strictly mathemarical point of view. The error, if one may call it that, lies in the basic presentation of the result.

It is conventional to isolate the constant k from the variables by showing it as a separate quantity, the first term on the right side. Instead of writing $F_{c}=\frac{m k}{F}$, it is preferable to indicate the same relationship this way:

$$
F_{c}=k \frac{m v}{r}
$$

In the last analysis, both relationships are mathemaricaily identiadi; but the latter contains better physics.

Please return to page 59 and choose the best answer.

Refer to Figure 18 on page 75.

Path CD is a perfectly straight line. The only conditions that wili permit any object moving in space to follow such a path are those in which the net force acting on the object is zero. The fact that a large amount of driving force is applied horizontally to the satellite does not negate the gravitational attraction of the Earth. Regardless of the speed of projection of the satellite at point C, then, the net force acting on it is not zero because it is still being attracted by the Earth. Hence, it cannot move along a straight line because it is not in dynamic equilibrium.

There is a much better answer to the question than the one you chose Return to page 75 please.

Almost, but not quite!

You worked the movement of terms correctly, but you should have ended with the following equation:

$$
v^{2}=\frac{F_{c} I}{T H}
$$

$W_{L}+$ happened to the square sign on the v ? You appear to have dropped it. Why?

To find v, you must take the square root of both sides of the equarion shown above.

Please return to page 81 and then choose the right answer.

YOUR ANSWER --- C

All right, let's go over the essential points.

We started with a series of rough experiments. We whirled a particie on a string and, one at a time, changed each of the three variables: spaed, mass, and radius of rotation. In each part of the experiment, we tried io determine what happened to the required centripetal force, F_{c}, as each of the variables was altered.

We found that the centripetal force had to be increased:
(1) when the speed (v) was fincreased. So we assumed that F : was directly proportional to v ; that is, $\mathrm{F}_{\mathrm{C}}=\mathrm{kv}$ 。
(2) when the mass (m) was increased. Again we guessed that kheie might be a direct proportion between F_{c} and m; that is, $F_{c}{ }^{s} \mathrm{~km}$ 。
(3) when the radius of rotation (r) was decreased. This suggestud that F_{C} might be inversely proportional to r, and we proceeded to make this assumption; that is, $F_{c}=k / r$.

These three proportions were then properly combined into the form:

$$
F_{c}=k \frac{m v}{r}
$$

We decided to do a unic check on the relation as it stood. But before we could do this, we had to make another assumption. We assumed which of the following?
(13)

A We should like the force to come out in nestons.
B k equals 1 and has no units.

YOUR ANSWER --- B

You are correct. Centripetal force, regardless of its source, acts along the radius of the circle of rotation toward the center. This radius is always perpendicular to the tangent through the particle at every point of the circle in which the particle is moving.

Try this problem. An electron has a mass of $9.1 \times 10^{-31} \mathrm{~kg}$. Under the action of a magnetic force, an electron moves in a circle of 2.0 cm radius at a speed of $3.0 \times 10^{6} \mathrm{~m} / \mathrm{sec}$. At what speed wili a pioton (mass = $1.6 \times 10^{-27} \mathrm{~kg}$) move in a circle of the same radius if it is acted upon by the same force?

Let us first write the equation for the centripetal force acting on the electron. Thus:

$$
F_{e}=\frac{m_{e} v_{e}^{2}}{r_{e}}
$$

(Cofy this.)
The subscript "e" relates all of these quantities specifically to the electron.

Using the subscript "p" for quantities relating to the proton, write the centripetal force equation for this particle.

Please turn to page 17 to check the equation.

CORRECT EQUATION:

$$
\mathrm{F}_{\mathrm{p}}=\frac{\mathrm{m}_{\mathrm{p}} \mathrm{p}_{\mathrm{p}} \mathrm{p}_{\mathrm{p}}^{2}}{2}
$$

Now the problem states that the same force is acting on both particies This tells you at once that $F_{e}=F_{p}$ which permits you to equate the right side of one equation to the right side of the other so that:

$$
\frac{m_{p} v_{p}^{2}}{r_{p}}=\frac{m_{e} v_{e}^{2}}{r_{e}}
$$

One of the conditions of the problem is that the proton is to move in a circle of the same radius as the electron. Therefore, you also know that $r_{p}=r_{e}$. If these are set equal to each other, the equarion reduces farther to which of the following?
(22)

A $m_{p} v_{p r y}^{r}=m_{e} v^{2} r_{e}$
B $m_{p} v_{p}{ }^{2}=m_{e} v_{e}^{2}$
C $m_{p} v_{p} r_{e}=m_{e} v_{e} r_{p}$
D None of the equations given above is correct.

Refer to Figure 3 on page 115. Your answer is improperly limited. To determine where no unbalanced force acts on a particle moving with uniform speed, you must. locate those ranges where the particie moves in a perfectiy straight line. True, A to C is a straight line, but so is che range from F to G. Over both of these ranges, the particle is in dynamie equilibrium since ntither the speed nor direction of the motion is changing. Hence, chere is no unbalanced force acting on the particle over either of these ranges.

Please return to page 1i5. Then select an alcernative answer.

YOUR ANSWER --- C

This answer is not right.

Think back to the way we obtained the equation for centripetal force. In deriving the expression for centripetal force, m always represents a singie mass, not the combined mass of two different bodies, regardless of their relationship to each other. Remember also that the Earth provides gravitational attraction.

```
Please return to page 86. You can find the right. answer.
    |
```

YOUR ANSWER -m- B

This is correct. We will want v all alone on the left side of the expression. So we have:

$$
\frac{m_{s} v^{2}}{r}=G_{r^{2}}^{m_{s}}{ }^{m_{2}}
$$

To solve for v, we like to attack the simplification this way: m_{c} and r on the left can be eliminated by multiplying this side of the equation by r / m_{s}. But if you multiply one side of any equation by a certatn factor, you must do the same thing co the other side. Thus,

$$
\frac{r}{m_{S}} \times \frac{m_{S} v^{2}}{r}=G \frac{m_{S} m_{e}}{r^{2}} \times \frac{r}{m_{s}}
$$

We want you to simplify this right down to the point whefe you obtain v (not w^{2}) all alone on the left side. Go to it: When you have finished (it's really not difficult at all), compare your answer with those beiow and select the statement that you feel is correct.
(33)
$A v=G \frac{m_{E}}{r^{2}}{ }^{3} \mathrm{~s}$.
$B \quad v=\frac{G^{m} m_{s}}{p}$
C The equation does not simplify to either of the two expressi.cns shown above.

YOUR ANSWER --- B

Refer to Figure 18 on page 75.

Path $C D$ is a perfectly straight line. An object moving through space can move along a straight line only if it is in dynamic equilibrium, that is, if the net force acting on it is zero. At an altitude of $1,000 \mathrm{mfles}$, the Earth's gravitational pull may be somewhat weakened, but it is still there and constitutes a very definite unbalanced force that would not permit the satellite to move in a straight line. In short, the Earth's gravitational force even at an altitude of 1,000 miles makes it impossible for the satelidite to move in perfect dynamic equilibrium.

Please return to page 75. The correct answer should now be evident.

YOUR ANSWER --- A

Although this statement is rrue, it is not included in the context of the notebook entry in question. Check your notes again.

Please return to page 133. You'il have to try another answer.

YOUR ANSWER --- B

nhis answer doesn't follow from our reasoning. If a particle is going to change its direction of motion at all, a force must be applied to it in the direction of the change. When the string is cut, the only existing inward radial force vanishes; hence the particle certainly could not begin to move inward at exactly the time when the only force that could cause in to do so ceases to exist!

You must remember that the parifcie is moving at a tangent to the circle at every instant in time and that the centripetal force is appiied to: the purpose of changing the motion from linear to circular motion. So if the centripetal force causes the motion to change from linear to circuiar. the removal of the force must permit the parifele to return to linear motion along the same ilne it was following at the instant when the string was cut. But was the particle flying inward toward the center along the radius ar the instant of cutting? Which way was it going?

You should have no difficulty in choosing the correct answer now. Please return to the question by turning to page 150.

YOUR ANSWER --- A

You are correct. As the radius decreases, the circle of motion becomes smaller and more curved. The increased curvature is a greater deviation from a straight-line path and hence "equires more centripetal force to produce it. Refer to Figure 10 。

Figure 10
Arc $A B$ is part of a circle with small radius r_{2}; arc $C D$ is part or circle with larger radius $r_{\text {I }}$. Both arcs are about the same length indicating the same distance traveled in unit time. $C D$ is more nearly a straight ine than $A B$; hence ic requires less centripetal force to produce it.

Thus as r decreases, F_{c} increases. Here again, we see a suggestion of a proportion bur this time, an inverse one. Following the same proceduze as before, we assume that F_{c} is inversely proportional to r and wrice:

$$
\mathrm{F}_{\mathrm{c}}=\frac{\mathrm{k}}{\mathrm{r}}
$$

So far, we have two assumed proportions:

$$
F_{c}=k v \quad \text { and } F_{c}=\frac{k}{r}
$$

That is, centripetal force is directly proportirnal to particie speed and inversely proportional to the radius of rotation. What is the other factox whose relationship to F_{c}, we wish to determine?

Write it; then turn to page 25 , please.
CORRECT ANSWER: The other factor whose relationship to F_{c} we wish to derermine is mass (m).
First, we'll repeat our observations about the other terms.
(1) When the speed of a rotating particle increases, all other factors remaining the same, the centripetal force required to maintain circular motion increases.
(2) When the radius of rotation of the particle increases, all other factors remaining the same, the centripetai force required to maintain circular motion decreases.
Please turn to page 156 in the blue appendix.

Now how abour mass? If in the imaginary experiment you had used a heavy object instead of a light one, say, a stone rather than a tennis ball, would you have had to exert more or less centripetal force as compared co that of the previous case for the same radius and the same speed?
(10)

A More force.

B Less force.

YOUR ANSWER --- A

You are correct.

We know, too, that the motion of a particle in a circular path may be described in terms of the following expression:

$$
F_{c}=\frac{m v^{2}}{r}
$$

The force in this case (centripetal force) produces an acceleration directed toward the center; hence this force may be substituted for the general value of F in $a=F / m$; where a is the centripetal acceleqation and m is the mass of the particle. In other words, we write:

$$
a=\frac{F}{m} \text { (general form of Second Law) }
$$

But since

$$
F=F_{c}=\frac{m v^{2}}{r} \quad \text { (centripetal force equation), }
$$

we may substitute $\frac{m^{2}}{r}$ for F in the general form and write:

$$
a_{c}=\frac{\frac{m v^{2}}{r}}{m}
$$

where a_{c} stands for centripetal acceleration.
Simplify this last expression. What do you get?
(28)
$A \quad a_{c}=\frac{v^{2}}{r}$
B $\quad a_{c}=\frac{m^{2} v^{2}}{r}$

```
YOUR ANSWER --- A
```

Not so.

If all four assumptions had been correct, then F_{c} would have come out in newtons or $\mathrm{kg}-\mathrm{m} / \mathrm{sec}^{2}$ instead of ming out in $\mathrm{kg} / \mathrm{sec}$ as irdid.

Let's review the assumptions once again:
(1) We found that F_{c} increased when m increased, so we assumed a direction proportion and wrote $F_{c}=k m$.
(2) We found that F_{C} increased when v inixeased, so we again assumed a direct proportion and wrote $F_{c}=\mathrm{kv}$ 。
(3) We found that F_{c} increased when r decreased, so we assumed an inverse proportion and wrote $\mathrm{F}_{\mathrm{c}}=\mathrm{k} / \mathrm{r}$.
(4) We assumed k equal ro unity; we also assumed k to be a pure number without units.

Now, since F_{c} did not come out in newtons or $\mathrm{kg}-\mathrm{m} / \mathrm{sec}^{2}$, then one or more of these assumptions must be incorrect.

Please return to page 66. You know the answer now.

YOUR ANSWER --- C

Not so! This equation shows acceleration to be proportional to the product of force and mass. Do you remember the verbal form of the Second Law? The acceleration of a mass is directly proportional to the applied force, but it is inversely proportional to the mass-of the body.

Write the correct form of the Second Law equation; then turn to page 98 again and choose the correct answer.

YOUR ANSWER --- C

Sure, that's correct. As the speed increases, the need to pull the string toward the center of rotation with more force is quite evident. Thus as the speed increases, the centripetal force increases. This suggests the possibility of a direct proportion between F_{c} and v_{0} Remembex, this is an intelligent guess but a guess nevertheless. Actually F_{c} might be proportional to v^{2} or to $\sqrt[4]{\mathrm{v}}$ or to v^{3}, or there may be no true proportionality at ail. So by assuming that F_{c} is directly proportional to v, we axe going "out on a limb," but there is no harm in this as long as we are awane of what we are dolng. Obviously, such an assumption will have to be tested later on.

Now going along on this assumptions 'ae'li write the assumed dizect proportion in owi familiar mathematical form:

$$
\mathrm{F}_{:}=\mathrm{kv}
$$

Next, picture repeating the experiment with a sering oniy half as long, this time keeping the speed constant at all times. What happens this sime?
A. As the radius decreases, the required centripetal force increases.

B As the radius decreases, the required centripetal force decresses

YOUR ANSWER --- B

You are quite correct. These are the right MKS values for this problem.

Now you have the equation and the values for substitution. Suppose you solve the problem and let us have the answer to two significant figures.

What is the maximum speed of the ball?
(20)

A $4.2 \mathrm{~cm} / \mathrm{sec}$
B. $18 \mathrm{~m} / \mathrm{sec}$

C Neither of the above answers is correct.

YOUR ANSWER --- A

You're letting some old, fixed ideas get the better of your reasoning. You wexe probably thinking of one possible way of starting the particle in its circular path (as when particles are affixed to strings)--by having che string slack before rotation begins; then you pictored the particle moving away from the center of rotation before the string became taut.

Bear in mind that the force F (any one of the infinite number of centripetal forces for any one of the infinite number of possible positions the paxticle may have at a given instant) cannot be applied until che stxing is taut. Thus, any mowement the particle undergoes while there is scill slackness in the string must occur befcre the centriperal force is applied.

Once the string is taut, the particle cannot possibly nove farther from the center, and hence it could not accelerate as described in this ariswer.

Please return to page 79 and choose a better answer.

Acceleration means a time rate of change of velocity. Acceleration occurs only when an unbalanced force acts on a nass. From the Second Law:

$$
a=\frac{F}{m}
$$

it is evident that regardless of the nature of the mass, if the unbalanced force is zero, then there is no acceleration. If $F=0$, then:

$$
a=\frac{0}{m} \text { sc that } a=0
$$

since zero divided by any number is zero.
The meteor is not acted on by an unbalanced force of any kind; thi's is the condition we have set up. Thus, $F=0$ and $a=0$, so the meteor cannot be moving with accelerated motion, uniform or otherwise.

Please return to page 5 and choose a better answer.

```
YOUR ANSWER --- B
```

Certainly, the equation you derived shows no such refationship. The mass of the satelifte $\left(m_{s}\right)$ does not even appear in it.

Perhaps you thought that the greater weight would require grearex speed to provide the inertia to keep the satellite from faliing to the Eaxth What you probably forgot was that the weight of the satellite provides an increase in inertia.

Since m_{s} does not appear in the equation for satelinte speed, wha: can you conclude about the dependence of satellite speed on sateilite fiass:

Please return to page 52 and make another answer selection.

YOUR ANSWER --- A

No.

You're forgetting that the radius of the orbit is the distance berween the satellite and the center of the Earth. Since the radius of the Earth is taken as roughly 4,000 miles, then the altitude must be added to this figure to obtain the orbital radius.

Please return to page 53 and choose the alternative answer.

YOUR ANSNER -- -

You are thinktng of accejeration as a change of opeed only Keriser
 gams magnterde, but the dicectons ate difiexemy, Now, although you may chank ar acelezation as she shane of megnitude of a veloeity in mamy wases, theye are just as many situations where an applied force prodrces analientelon by changing ehe direction of the velocity rether thars ins magnimede. In the following definition:

$$
\equiv=\frac{\Delta v}{\partial V}
$$

 with exme, or bers do atruitaneousiy

So, the uninanced force F in tigure 12 on page 9 ; when in any sne of its posstble posibions, must cause the particle to accelexare. The question is, in what divection does the acceleration rake place?

Phease cexurn to page 79. Try another answer.

```
YOUR ANSWER --- D
```

One of the conversions is not right. It might help if we reminded you that there are 100 cm in one meter and $1,000 \mathrm{~g}$ in one kilogram.

When you locate the error, the list of values will be correct. Find it; then return to page 56 and select the right list.

YOUR ANSWER --- B

This is incorrect. It looks as if you were confused by a decimal point. Or you might have doubled the speed rather than squaring it.

The equation is:

$$
\mathrm{F}_{\mathrm{c}}=\frac{\mathrm{m} \mathrm{v}^{2}}{\mathrm{r}}
$$

Now substitute the numbers only:

$$
F_{c}=\frac{80 \times(20)^{2}}{20}
$$

If you doubled the 20 in the numerator instead of squaring it, you would obtain:

$$
\begin{aligned}
& F_{c}=\frac{80 \times 40}{20} \\
& F_{c}=160 \text { units of force }
\end{aligned}
$$

Of course, this is wrong. Repeat the calculation; then return to page 104 and select a better answer.

YOUR ANSWER --- A

Refer to Figure 3 on page 115. The path of the particle from A to C is a straight line, and since you are told that you are to assume uniform speed throughout the path, then there is no unbalanced force acring on the particle from A to C. You answer is correct thus far.

From D to E, the particle's path is a smooth curve. As we have seen, a particle will traverse a curved path only if an unbalanced force acts on if while it is following the curve. Hence, there must be an unbalanced force acting on the particle throughait the time that it is moving from D to E : Thus this part of your answer is incorrect.

Please return to page 115 and choose a better answer.

YOUR ANSWER --- A

You are correct. Since m for Mars is $1 / 10 \mathrm{~m}$ for Earth, then v for the Martian satellite would be smaller than v for the Earth satellite, and the Martian satellite would travel more slowly.

How much more slowly would it travel? That is, at about what fraction of the Earth satellite's speed would the Martian satellite move?
(39)

A $\frac{1}{100}$
B $\frac{1}{10}$

C $\frac{1}{3}$

YOUR ANSWER --- B

You are correct. In Trials 1 - 3 only the mass varies; in Trials $4-6$ only the speed varies; in Trials $7-9$ only the radiug varies. Now let's find out what we can learn from these data.

Suppose we consider Trials 1 - 3 first. For these three trials, $v=$ $1.0 \mathrm{~m} / \mathrm{sec}$ and $r=1.0 \mathrm{~m}$ fhroughout, while the mass goes from 1.0 kg to 2.0 kg to 3.0 kg . If we take 1.0 kg as the initial mass, the centriperal force required is 1.0 nt initially. Now the mass is doubled to. 2.0 kg , and we find that the force has also doubled to 2.0 nt. Last, the mass is tripled from 1.0 kg to 3.0 kg , resulting in a tripling of the force from 1.0 nt to 3.0 nt .

Based upon such functional manipulations, the answer to this question should be immediately forthcoming: is F_{c} directly proportional to m? Does F_{c} vary directly as the mass of the rotating body? What do you say? Yes or no?

Write your answer; then turn to page 42 .

CORRECT ANSWER: Ye: The centripetal force F_{C} is directly proportional to the mass m of the body in circular motion.

Ail right, then, this was the assumption we made, and it has been verified by experiment. We now know definitely that $\mathrm{F}_{\mathrm{c}}=\mathrm{km}$.

Turning our attention next to Trials 4 through 6, we observe that the speed has been made to vary while the mass and radius were held constant. Let's summarize part of the chart information below:
(m and r constant)
(Traal 1)
(Txial 4)
(Trial 5)
(Trial 6)

Speed

$1.0 \mathrm{~m} / \mathrm{sec}$	1.0 nt
$2.0 \mathrm{~m} / \mathrm{sec}$	4.0 nt
$3.0 \mathrm{~m} / \mathrm{sec}$	9.0 nt
$4.0 \mathrm{~m} / \mathrm{sec}$	$\boxed{6.0 \mathrm{nr}}$

It is obvious that doubling the speed does not double the centripetal force, tripling the speed does not triple the force; nor does quadrupling the speed quadruple the force. Therefore, F_{c} is not directly proportional to v. A proportionality does exist, however, which can be recognized from the above data. Which one of the following expresses this correctly?
(15)

A $\quad F_{c}=k \psi^{2}$
B $\quad \mathrm{F}_{\mathrm{C}}=\mathrm{kv}^{3}$
$C \quad F_{C}=k \sqrt{v}$

YOUR ANSWER --- C

Refer to Figure 3 on page 115. You are quite correct. Over both of these ranges, the speed and direction of the particle are unchanging; thus the particle is in dynamic equilibrium and is not acted upon by any unbalanced foxce.

PARTICLE MOVES WITH UNIFORM SPEED EROM A TO J

Now refer to Figure 4. A particle is shown in various parts of a parh from A to J, moving with uniform speed at all times. A boy holds a string in his hand at point 0 so that when he wishes, he can take up the slack of the cord and exert a force on the particle (a ball, perhaps). Note that the stiang is shown in its slack condition when the particle is at points A, B, C, I, and J. $A:$ the remaining points in the path (D, E, F, G, and H), the boy has puiled the string taut and is exerting an unbalanced force on the particle. Assuming that this is the result of an experiment using sequential high speed flash photography, how do you know that the string is not exerting an unbalanced force on the particle at A, B, C, I, and J?

Think about this; then turn to page 44.

Two separate aspects of the diagram (Figure 4 on page 43) indicate that the string does not apply an unbalanced force to the particle at A, B, C, 1 , and J 。

First, the string is slack. A slack string cannor exert force on anything until it is pulled taut. Second, at the points named, the partfcle is moving with constant velocity; hence it cannot be experiencing an unbalanced force in any direction.

Jusc before the paricle reaches 0 ; its parh starts to curve. It then continues to curve until it arrives at H. Throughout this incerval, the boy exerts a force on the string (note that it is raut) as indicated by the arrows He keeps the string at a constant length all during the time that the particle moves from D to H, pulling inward toward the finger around which the string is wound. (Assume also that the finger does not move during chis tine.)

Using the above experimental facts, tell us chis: The curve from D WH is parc of what special geometric figure?
(4)

A Curve DH is an arc of a circle.
B Curve DH is part of an ellipse.
C Curve DH is part of a parabola.
D I don't know how to determine this.

You are correct. The centripetal acceleration of a particie moving in a circle with constant speed is given by the quotient of the square of the speed divided by the radius of the circle.

$$
\frac{\text { NOTEBOOK ENTRY }}{\text { Lesson }}
$$

(Item 3)
(b) The centripetal acceleration of a particle moving in a circular path is directly proportional to the square of the speed of the body and inversely proportional to the radius of rotation.

$$
a_{c}=\frac{v^{2}}{r}
$$

Throughout this lesson, we have carefully avoided the use of the word "body" in phrasing the laws. Our consistency in using "particle" rather than 'body" arises from the difficulty one has in discussing the betavior of bodies of various shapes in circular motion.

Figure 15
In Figure $15(1)$ we have a very small sphere. if ic were minutely small, we could properly call it a particle, so let us imagine that it is tiny enough to describe as a particle. In that case, the radius of rotation (r) is clearly and unquestionably defined as ilne segment AC. But in Figure 15(2), we have a body, not a particle. Which line segment is the radius here?
(29)
$A \quad B C$ is the radius of this circle.
$B \quad D C$ is the radius of this circle.
C Neither $B C$ not $D C$ is the radius of this circle.

YOUR ANSWER --- A

No. A reaction is evidence of Newton's Third Law of Motion at work. In applying the Third Law, you must remember that there are always two bodies involved and that when a force is applied to Body A by Body B, then a force equal in magnitude but opposite in direction is applied by Body B ro Body A.

What the answer above really says is that the force applied to the bail (Body A) produces a reaction force also applied to the same body. If this were the case, then centripetal and centrifugal forces would cancel each other and leave the ball in dynamic equilibrium. But if it is in dynamic equilibrium, it must move in a straight line. Hence, by thinking of the rwo forces as applied to the same body, you would make it impossible for the ball to move in a circie:

Please return to page 64. Choose the alternative answer.

YOUR ANSWER -.- C

You made no use of the fact that $r_{e}=r_{p}$, the condition given in the statement of the problem. Remember, you were told that the proton was to move in a circle of the same radius as the electron. This fact simplifies the equation considerably.

But a more fundamental error concerns a missing exponent. How did that disappear?

Please return to page 17 and select the tight answer.

YOUR ANSWER --- B

You are correct. This is an inevitable conclusion. Acceleration must occur in the direction of the unbalanced force. Regardless of the particular F we choose--and there are an infinite number of possible posirions of P and consequently an infinite number of possible directions for $F--$ it is always directed toward the center; therefore the paxticle must be constantly accelerating toward the centex.

Does this give you a feeling that the particle must fall inco the center ultimately? Incidentally, this is a very common feeling among people who hear of centrally directed acceleration for the first time. if you wonder about this, we believe we can straighten out your thinking by approachirg it from a slightly different viewpoint. Let's try it.

In the situation shown in Figure 12 on page 79 , would you say that the centripetal force $F\left(F_{1}, F_{2}, F_{3}\right.$, and so on around the circle) is being applied continuously or discontinuously in spurts?

Check your answer by turning to page 50 .

CORRECT ANSWER: CEntinpetal foxce must be appiied continuously if the particle is to move in a smooth circle as this one does.

Figure 13
Instead of applying the centripetal force smocthly, what would happen if we applied it discontinuously in a series of jerk coward the center with slack periods in between? In Figure 13, let's imagine that we start with the particle at A, assuming that it is already in motion. The string is slack as shown, so the particle must move in a straight ine, say $A B$. Let $A B$ be the distance covered by the particle while the string is slack; then, suddenly at B the string is tightened and force F applied to it. Say the force acts instantaneousiy. Thus, instantaneousiy the particle will be dragged down from B to C, and at the instant it reaches C, the string is allowed to go slack again. At this instant, it will again take off at a tangent to the curve on path CD.

While the string was siack from A to B, the distarice between the particle and the center of the circle 0 was increasing as is evident from the diagram. The particle moved further away from the center by the amount $B C$. Then upon tightening the string, the particle was brought back to the circle (B to C) by force F, whereupon the string went slack again, and the particle moved from C to D. Along which path was the particle undergoing acceleration toward the center?

A $A B$

B BC

C CD

YOUR ANSWER --- A

It may be that you are insensitive to force changes or that you can t recall exactly what happens in this situation.

Think of whirling a ball at a slow speed and then at much faster speed. Try to picture the inward force you have to exert to prevent the ball from flying off at a tangent. You'll find that there is a definite difference between the required forces for the slow and fast rotational speeds.

Please return to page 10. Choose a better answer.

YOUR ANSWER --- C

You're right! The correct procedure follows:

This leaves you with:

$$
v^{2}=G \frac{m e}{r}
$$

Then raking the square root of both sides, you get:

$$
v=\sqrt{G \frac{m_{e}}{r}}
$$

Examining the terms under the radical, we see that G is known. (Do you remember its value?) It's $0.667 \times 10^{-10} \mathrm{~m}^{3} / \mathrm{kg}-\mathrm{sec}^{2}$. Also, m_{e} is known $\left(5.98 \times 10^{24} \mathrm{~kg}\right)$, and r, the radius of the circle of rocation (the orbit of the satellite), can be determined.

But prior to warking out satellite velocity problems, we can now answer the second question proposed eariler: Does a heaviez satellite have to move faster or more slowly than a Ifght one to stay in the same stable orbit?

Study the final velocity equation above, Then select one of the answers below.

A A heavy satellite must move more slowiy than a light one to follow the same orbit.

B A heavy satellite must move faster than a light one to foliow the same orbit.

C Heavy and light satellites move at the same speed when in the same orbit.

D The equation does not answer the question.

YOUR ANSWER --- C

You are correct. Considering G and m_{e} as constants, to determine the effect of radius on speed, we can rewrite the equation thus:

$$
v=\frac{k^{\prime}}{\sqrt{r}}
$$

We see at once that the speed is inversely proportional to the square root of the radius.

The importance of this relationship is nicely shown by the following problem. An artificial satellite must be accelerated in orbit to nearly 18,000 miles per hour at an altitude of 250 miles above the Earth's surface. At what altitude would it have a stable orbit if it were accelerated to oniy 9,000 miles per hour?

The answer is that the satellite would have to lifted to an altitude of 13,000 miles above the Earth to find a stable orbit at $9,000 \mathrm{mi} / \mathrm{hr}$. Does this sound like a tremendous jump? It does; but there is good reason for it. Let's see how it works out.

What is the radius of the orbit at an altitude of 250 miles?
(36)

A 250 miles.
B 4,250 miles.

YOUR ANSWER --- C

This is not true.

If $F_{c}=k / v$, then the chart for these trials would look like this (taking $k=1$):

	v	$\mathrm{k} \mathrm{V}^{\text {v }}=\mathrm{F}_{c}$
(Trial 1)	i. $0 \mathrm{~m} / \mathrm{sec}$	
(Trial 4)	$2.0 \mathrm{~m} / \mathrm{sec}$	k $\because 2 \times 1.45 \mathrm{n}$
(Trial 5)	$2.0 \mathrm{~m} / \mathrm{sec}$	$k \sqrt{3}=2.73 \mathrm{nc}$
(Trial 6)	$4.0 \mathrm{~m} / \mathrm{sec}$	$\mathrm{k} \sqrt{4} \mathrm{~m} 2.0 \mathrm{mt}$

(Taking $k=1$ is not actually necessary, but it does simplify the arithmetic。)

Our chart does not show these experimental results for the trials listed. This means that the expression $F_{c}=k \sqrt{v}$ does not met the requixements of the data and, therefore, cannot be the correct equavion.

Please return to page 42 and make another selection.

YOUR ANSWER --- B

No: You're being careless. If you should forget an equation that states a principle, you can help yourself by thinking of the vexbal form of the principle and then making the equation fit the verbal form.

The acceleration of a mass is directly propotional to the force applied and inversely proportional to the mass of the body. Is that what the equation you selected says? Of course not.

Please return to page 98 and select the right answer.

YOUR ANSWER --- A

You are correct. Since you obtained the right literal solution, you apparently don't need further help on this.

In the event that you did not copy the problem specifications, we'11 restate the problem: a 980-g ball is whirled in a horizontal circle the radius of which is 36 cm . What is the maximum speed it can have if it is not to break the string? This particular string will break if 49 nt of force are exerted on it.

Only one of the following lists is completely corect iox solving this problem. Which is the right one?
(19)

$$
\begin{aligned}
& m=0.98 \mathrm{~kg} \\
& \mathbf{r}=0.036 \mathrm{~m} \\
& \text { A } F_{c}=49 \mathrm{nt} \\
& \mathrm{v}=\text { ? } \\
& m=0.98 \mathrm{~kg} \\
& \text { B } \quad \mathbf{T}=0.36 \mathrm{~m} \\
& F_{c}=49 \mathrm{nt} \\
& v=\text { ? } \\
& m=9.8 \mathrm{~kg} \\
& \text { C } \quad r=0.36 \mathrm{~m} \\
& F_{c}=49 \text { nt } \\
& \mathrm{v}=\text { ? } \\
& m=980 \mathrm{~g} \\
& \text { D } \quad \begin{array}{l}
r=0.36 \mathrm{~m} \\
\mathrm{~F}_{\mathrm{c}}=49 \mathrm{nt}
\end{array} \\
& v^{c}=\text { ? }
\end{aligned}
$$

YOUR ANSWER ---- B

If the direction of moving body changes, this constitutes accelezation Do you remember the reasoning that lies behind this statement? Perhaps a very brief review is called for.

Velocity is a vector quantity. The magnitude of the velocity vector is the speed, but the direction of motion must be stated to fully describe a given velocity. If either the speed or the direction of a motion is altered, the velociry has been changed. This is the same as saying that any body which moves in a path having a variable direction must be accelerating while the direction is changing. So, when you say chat the path is variable, you are saying that the meteor moves with accelerated motion.

But acceleration occurs only when an unbalanced force acts on a mass. From the Second Law:

$$
a=\frac{E}{m}
$$

it is clear that, regardless of the nature of the mass, the acceleration is zero if the unbalanced force is zero. That is, if $F=0$, then:

$$
a=\frac{0}{m} \text { or } a=0
$$

We specified that the meteor is moving in a place where no force of any kind acts on it; hence the unbalanced force is zero. So, its accelerarion is also zero, and its path cannot le a varying one.

Please recurn co page 5 and select a more suitable answex.

YOUR ANSWER --- A

You made no use of the fact that $r_{p}=r_{e}$, the condition given in the statement of the problem. Remember, you were told that the proton was to move in a circle of the same radius as the electron.

Furthermore, r_{p} and r_{e} are denominators in the original equation; you have moved both of them up into the numerator in an improper mathematical operation.

Please return to page 17; then look at the original equation once again. If $r_{p}=r_{e}$, what can you do with these factors immediately?

YOUR ANSWER - - A

You are correct, of course. As the mass increases, the required centripetal force increases. Again assuming a direct proportionality, we write:

$$
\mathrm{F}_{\mathrm{c}}=\mathrm{km}
$$

We now have the following three proportions:

$$
\begin{aligned}
& F_{c}=k v \\
& F_{c}=\frac{k}{r} \\
& F_{c}=v
\end{aligned}
$$

As F_{c} is the dependent variable in all three proportions, we may pur them together to form a singie statement with F_{c} on the left of the equals sign. Can you do it? One of the following is the sorrect combination; the others are wrong. Select the one you think is right.
(11)

A $F_{c}=k \frac{m r}{v}$

B $\quad F_{c}=\underset{m v}{r}$

C $\mathrm{F}_{\mathrm{c}}=\frac{\mathrm{kmv}}{\mathrm{r}}$
D $F_{c}=\frac{\mathrm{mv}}{\mathrm{k}}$

Refer to Figure 13 on page 50.
The string was slack all throughout the flight of the particte from A to B. Thus there could be no force acting on $i t$ in any dirextion dwe to the siring. With no unbalanced force acting on it, the paridcle must have moved with uniform velocity from A to B. We must conclude, then, that it did not accelexate at all along this path.

Paease rerurn to page 50 and chink this over once more berve making another answer choice.

This is not true. Refer to Figure 4 on page 43. You may not know much about the properties of ellipses but you can recognize this: an ellipse cannot be drawn by using a fixed length of strinic tied to a single fixed center. In other words, we can say that an ellipse has a varying radius when this radius is drawn to various parts of the curve from the same fixed center.

Figure 5
See Figure 5. The three radii, r_{1}, r_{2}, and r_{3} are of different lengths, so the ellipse could not have been drawn with a fixed length of string tied to point 0 .

Now think! What kind of geometric figure can be drawn by a fixed radius rotating so that one end of it remains on a single fixed point?

Please return to page 44 and choose the right answer.

YOUR ANSWER --- B

No. The mass of the Earth is impilcit in the F_{C} part of the equation. That is, $F_{\text {is }}$ is provided by the gravitational pull of the Earth on the satellite, and the mass of the Earth is included in the expression for this gravitational pull.

Please return to page 86 and select a better answer.

YOUR ANSWER --- C

You are correct. The speed v is directly proportional to the square root of the planet's mass. Thus $v=k \sqrt{m}$, and, since the mass of Mars is about $1 / 10$ that of Earth, then $v=k \sqrt{1 / 10}$ or roughly:

$$
v=\frac{1}{3} k
$$

NOTEBOOK ENTRY
 Lesson 10

4. Satellite motion
(a) The speed of an Earth satellite is given by:

$$
v=\sqrt{G \frac{m_{r}}{r}}
$$

where $v=$ speed in $m / s e c, G=$ constant of universal gravitation in $m^{3} / \mathrm{kg}-\mathrm{sec}^{2}$, $m_{e}=$ mass of the Earth in kilograms, and $r=$ radius of orbit in meters.
(b) To find the speed of an orbiting satellite around any planet other than Earth, substitute the mass of this planet for m_{e}.
(c) For a given speed, the radius of a satellite orbit may be found
from:

$$
r=\frac{G m e}{v} e
$$

Before continuing, please turn to page 158 in the blue appendix.

As we dxaw near the close of this lesson, you are perhaps wondering if we are going so mention genctifugal force at ail. por will have observed of course, that we did not need it at all to explain any of the effeces in circular motion. The notion of cencrifugak force is quite superiluous in physics; yet we encounter it every now and then in our reading. Let's put the phrase in ftis proper place here and now.

To eliminate the side effects due to gravity, friction, atr resistance, and so on, let us conceive or̈ a ball revolving around a frietionless beaxing in a vacuum on the end or a string in deep space where gravication nay be. ignored. (Figure 20)

Figuxe 20
In this iäealized situation, there is only one-fozee-actingon the ball if it roves with uniform speed. This force is centriperialiones, directed toward the center of rotation at every inscant. It fs the centripetal force which causes centripetal asceleration and prevencs the ball from moving off in a straight line。

Now, in the original concept of centrifugal foree, it was thought that in some mysterious way a force acted outward from the cencer on the ball, causing the string to remain taut. We have shown that no such force exists. The only force acting on the ball is the inward one-centrifetal force.

In recent years, there has been an inclination among physicises co regard centrifugal force as a reaction to centripetaf riorce and thus change the concept itself. We know that an inward force is applied to the bell; this automatically means thât another force having the same magnitude but opposite direction mest be applied to which of these?

A Ball.
B String。

YOUR ANSWER --- C

Statement C is quite accurate but, unfortunately, it has nothing to do with the information in notebook entry $2(h)$.

Please retura to page 133. Try again!

YOUR ANSWER --- C

You are correct. The three proportions should be combined inco the single proportion show in the answer: But remember, please, that the combined form represent: a series of thiee assumptions which have yet to be verified.

As a first step, let us do a unic check on this expression, making still another assumption: we shall assume that k equals 1 and that ic is dicensionless. Then, we'11 express the mass (m) in kilograms, the velocity (y) in meters per second, and the radius (r) in meters. If all our assumptions are correct, then F_{c} should come out in newrons.

$$
\mathrm{F}_{\mathrm{c}}=\frac{\mathrm{kg}-\frac{\mathrm{mi}}{\mathrm{sec}}}{\mathrm{~g}}=\frac{\mathrm{kg}}{\mathrm{sec}}
$$

Were all our assumptions correct?

(12)

A Yes.
3 No.
C I don't'know.

YOUR ANSWER --- B

There are at least two errors in this solution.

If you work out the units of this expression, you get something like this:

$$
\begin{aligned}
& \text { Given: } G=\frac{m^{3}}{k g-s e c} 2, m_{e}=k g, m_{s}=k g, r=m \\
& \text { Substituting: } v=\left(\frac{m^{3}}{k g-s e c} 2\right)\left(\frac{k g g^{\circ} k g}{m}\right) \\
& v=\frac{m^{2} k g}{s e c}
\end{aligned}
$$

But velocity is not measured in the square of meters per second times kilograms .

So, work out the problem carefully.
ase return to page 20 and choose another answer.

YOUR ANSWER --- A

You're getting your squares and square roots mixed up again. The speed v is directly proportional to the square root, not to the square, of the planet's mass.

Please return to page 40 and try again.

YOUR ANSWER --- B

If quantity a varies inversely as the square of b, then you would see this form:

$$
a=\frac{k}{b 2}
$$

Howewer, in the sarelife speed equation, the form is entixeiy different. We might rewrite it as follows:

$$
v=\sqrt{G} \frac{\sqrt{m_{e}}}{\sqrt{I}}
$$

Since G is the constant of universal gravitation, and the mass of the Earth m_{e} is constant as far as we are concerned, then the product Gm_{e} may be replaced by a constant to study the proportion.

$$
v=\frac{k}{\sqrt{r}}
$$

Surely this form is not the same as $a=k, b^{2}$, is it? Hence, the speed cannot be inversely proportional to the square of the radius.

Please return to page 122 and choose another answer.

YOUR ANSWER --. A

If the magnetic force is to serve as the centripetal force, then it cannot act along the tangent. A force acting along the tangent could increase or decrease the instantaneous speed of a particle, but it could not change its direction. Remember that the direction of a particle moving in a circle is constantly changing.

Please return to page 124. The other answer is coryect.

YOUR ANSWER --- B

This answer indicates that you may not have undersiood the question or that you can'r recall exactly what happens in such a situation. Your f.aser, through the medium of the string, must exert a centziperal force inward along the radius of the circle as the ball is whiried asound. As we have explained, the inward or centripetal force must act coward the center of the circle at all times, requiring you to shift your puling directicn continuousiy. Normally, the human muscular coordination is more than adequate to make this continuous shift more or less automatic; you don't have to think about it.

Now ss the ball is whirled at a greater speed, the need to: cencripetal force still exists, of course. The question is, will the rorye tequixed to keep the bali in a circular path be greater, smallex, or whe same fou hygh speed as compared wirh the force at yow speed?

Please return to page 10 . Select a better answer.

YOUR ANSWER - - C

You are correct. $B C$ is too short and DC is too long for efther to be the radius. But this is a real situation; certainly, a ball can be whirled on a string with a definite and fixed radius of rotation.

There is a point in (or near) any body regardiess of its shape at whith we may consider all of its mass to be concentrated. The mass is not actualiy concentrated there, of course, but by establisining such an imaginary point, problems in rotation become soluble. For example, if we considez ali the mass of a uniform sphere or of a erfect unfform cube to be concentrated at the gemetric center, this point may then be taken as the particle which reminates the radius. The point where all of the mass of any body may be considered to be concentrated is called the center of geavity of the body. Our course of study does not permic an extended discuasion of the center of gravity of oddiy shaped bodies such as cones, pyramids, cylinders, and so forth, but we feel that you should be exposed to the idea very briefly.

One important characteristic of the center of gravity is this: if you place your ringer immediately below the center of graviey of an objeci (along a vertical line), the body will balance on your finger. To see figure 16 which illustrates shis, turn to page 73.

$$
\square^{\prime}
$$

SPHERE
SUE
CYLINDER
CONE

Figure 16
Figure $i 6$ shows 4 geometric objects: a sphere, a cube, a index, and a cone in each case, the object is balanced on the point or an anion placed immediately below its center of gravity (

In many solid shapes, the center of gravity coincides with the geometric center. This is true, for example, in a uniform sphere, cube, or cylinder; but it is not true in a cone or pyramid.

Figure 17
The geometric center of a cone or pyramid may be described as halfway between its apex and its base along the major axis. As you probably guessed. the center of gravity for each of these shapes, however, is nor halfway along the major axis but rather close to the base than to the spear. No mate er in what position you place a cone above a pointed support, it will be balanced if its center of gravity is immediately above the point of support along 3 vertical line.

Please go on to page 74 .

In circulaz motion, we axe most orten oncerned with spherical bodies. For ofr torthcoming wotk on satellites, it will suifice to consider sacelintes as spheres so that we zan iefer to them as bodies ra:her than particies. The radxus of rotation is measured ryom the center of the circie of votation to the center of gravity of the sphere.

The Earth possesses one natural satellite, the moon. The Space Age began with the iramatic ascent of a ciny object, Spurnik I, she fi:st manmade satelilite, which was suctessfuliy piace into orbit by the J. S.S.K Today ifrerally hundreds of marimade moons revoive avound the Eaxth in the outer fringes of our acmosphere.

Naturaily, we are interested in rhe physics of a sateinde's orbir. How tast must it move to scay in orbit: Must a heavier saxelizce move iaster or moze sjowly whan a lighter one to remain in the same scabie oxbis? How dues the tadius ot the orbit discarce becween the center of gravity or the eatehine and the cenxex of graviry of the Earth atfext the speed required :c keep the sarelinte there? If we projected ásateinice riom Maxs, woud its spesd be the same as for a similar orbit arourd rhe Earth:

We know enough to answer all these questions now! let's take cham one at a time. Betore we do, however, we'll want to get a genexal qualitarive picture of the satellite orbits.

Piease go on to page 75.

Figure 18 shows a satellite being launched fiom point A. Its initial path is vertical or neariy so to point. B. Aucomatically, or by radio control from the ground, the sateliite vehicle is turned into path $B C$. At C the satellite separates from the last rocker stage and becomes a "free agent." Driving power, active from A through. C, is now gone. The satellite's future behavior will be determined only by natural forces.

Two possible paths of the "free" satellite are shown in the diagram, $C D$ and $C E$. Under what conditions would the satellite take path $C D, a$ perfectly straight line?
(30)

A If a large amount of driving power had been supplied to it by its rocket at the moment before separation.
B If point B were at an altitude of at least 1,000 miles.
C If gravitational force from the Earth did not act on it.

YOUR ANSWER -...- C

You are coxrect. The motional stace thar describes dynamic equilibrium is uniform veiocity, a state in which neither the speed nox the dixection of the motion changes.

(2)

A F is a pushing force, while F^{\prime} is a puliing force.
$B \quad F^{\prime}$ is acting for a longer time than F.
C F^{\prime} is a force of larger magnitude than F 。
D The paxtfoles in the two cases may have dirferent masses and hence different inertias.

YOUR ANSWER --- C

Refer to Figure 13 on page 50.
Perhaps you did nor notice that we said the string became slack again at the very instant the particle was restored to its position on the circle at point C. Thus, from C to D che string is slack and cannot exert a force on the particle. With no unbalanced force acting on it, the particle muse have moved with uniform velocity from C to D. We must conclude, then, that it did not accelerate at all along this path.

Think it over. Then return to page 50 and choose a berter answer.

YOUR ANSWER --- A

One of the conversions in this list is incorrect. It might heip if we reminded you that there are 00 cm in one meter and $1,000 \mathrm{~g}$ in one kilogram

When you locate the error, tne list of values will be corzect. Find ir; then return to page 56 and select the right list.

YOUR ANSWER --- B

You are correck. The acceieraricn produced by an unbalanced force acting on a mass takes place in the direction of the force. AlWAYS! This is a physical law because there are no known exceptions to it.

Now we want to appiy this 1dea to centripetal force.

Figure 12
In Figure 12 , a particle is moving in a circular path with uniform speed and is shown in three instantaneous positions, P_{1}, P_{2}, and P_{3}. The force required to maintain the circular motion for each instantaneous position is designated as F_{1}, F_{2}, and F_{3}. The force at each position is, of course, the centripetal force and, as shown, is directed toward the center of rotation. In accordance with the discussion we have just completed, if the force acts toward the center of rotation, then what must the particle do?
(25)

A It must accelerate away from the center of rotacion at the instant of application of this force.

B It must accelerate toward the center of rotation at the instant this force is applied.

C It cannot be accelerating at all since its speed is constant.

YOUR ANSWER -.-. A

There are two errors in the combined form.

First, F_{c} was assumed to be directly proportiona, to v on the basis of rough experimental evidence. Your combined form shows an inverse proporion between these two variables.

Second, F was assumed to be inversely proportional to r, also on the basis of a rough experiment. Your combined form indicates a direct propoxinicri berween these variables.

Be sure to keep the inverse and direct proporcion straight.

Please return to page 59. Study the remaining possibilities and make your next selection right.

YOUR ANSWER --- C

$$
\begin{aligned}
& \text { Wou ecorvect. The full solution follows: } \\
& F_{e}=\frac{m v^{2}}{x^{2}}=\frac{80 \mathrm{~kg} \mathrm{x}(20 \mathrm{~m} / \mathrm{sec})^{2}}{20 \mathrm{ra}} \\
& F_{c}=\frac{80 \text { y } 400}{20} \frac{\mathrm{~kg}-\mathrm{m}}{\mathrm{sec}}=1,600 \text { newtons }
\end{aligned}
$$

Try another problem. This time, a 980 -gxam ball is whiried in a horirontal cirele the radius of which is 36 cm . Whac is the maximum speed it can have it it is not ro break the scring? This pareicular scring will break if 49 ut or force ase exerted on ir.

Note carefuliy shat the unics given are CGS wather than MKS, except for the breaking force. Berore scarting your solution, be sure co convert the units ghat need changing in order to get all the quanticies in a single system of measurement.

Solve the problem and decermine the maxmum speed of the ball for the condirions describad. The first step should be to solve the literal equation so that whe unknown is alone on the left of the equals sign. Which of the following is the correct literel solution?
(18)
$A=\sqrt{\frac{E_{c} P}{\pi}}$
B $v=\frac{E c^{2} r^{2}}{\mathrm{~m}^{2}}$
$C \quad v=\frac{\mathrm{F} u \dot{I}}{\mathrm{I}}$

This is not true. It may be that these actions and changes are $x 0$ commonplace to you that it's difficult to stop and figure out what really happens. However, it is unreasonable to expect that the force will decrease wich decreasing radius.. Kefer to Figure 10 .

Figure 10
We have drawn two arcs, $A B$ and $C D$, from the same center but with different radij. For:comparison purposes the actual lengths of the ares are very neaxly the same. Note how flat $C D$ is compared with $A B$. Or in other words, note how great the curvatire of $A B$ is as compared with $C D$,

Thus, arc $C D$ approaches a straight Iine more closely than $A B$. This, In turn, means that CD is less of a departure fror dynamic equilibrium than $A B$; hence less centripetal force would be required to produce cixculat motion when the radius is r_{1} than when $f t$ is r_{2}.

Please return to page 30. Choose the other answex.

YOUR ANSWER --- D

Statement D is quite true but is not a summary of notebook entry $2(\mathrm{~h})$. Check your notes again.

Please return to page 133 and select another possibility.

YOUR ANSWER --- B

No, that's not coxrect.
$k=i f: \quad$ If $F_{c}=\mathrm{kv}^{3}$, then the chart for these trials would look like this takang

	v	$\mathrm{kv}^{3}=\mathrm{E}_{\mathrm{c}}$
(Trial 1)	$1.0 \mathrm{~m} / \mathrm{sec}$	$k(1)^{3}=2 n t$
(Telal 4)	$2.0 \mathrm{~m} / \mathrm{sec}$	$\mathrm{k}(2,3=8 \mathrm{nt}$
(Trial 5)	$3.0 \mathrm{~m} / \mathrm{sec}$	$\mathrm{k}(3) \frac{3}{3}=27 \mathrm{nc}$
(Triai 6)	$4.0 \mathrm{~m} / \mathrm{sec}$	$k(4)^{3}=64 n t$

(Taking $k=1$ is not actually necessary, but it does make our ayithmet: somewhat simpiex.)

Weil, our chart does not show these experimentai cesults $1 \geqslant x$ che trials listed. This means that the expression $F_{C}=k{ }^{3}$ does not meet the requirements of the dara; hence it cannot be the correct relation.

Please zeturn to page 42 and select a better answer

YOUR ANSWER ---- C

You are correct. The unbalanced force due to gravity acting on the satelife causes the satellite to follow a cuired path (CE).

Like the planets and the moon, artificial satellites move in elifpricai orbits. For our purposes, however, the assumption of a circuiar orbit ro make our calculations easier will do no harm. So let us say that CE is the arc of a circle.

We are ready now to tackle the first question: How fast must the satellite move to stay in orbit?

The gravitational force between the satellite and the Earth is the centripetal force that causes the satellite to follow a circular orbit. From the Law of Universal Gravitation, we have:

$$
\mathrm{F}_{\mathrm{g}}=\frac{\mathrm{Gm}_{\mathrm{s}} \mathrm{~m}_{\mathrm{e}} \mathrm{e}}{}
$$

This is the gravitational force that affects che motion of the sateifire The mass of the satellite is represented by m_{s}, the mass of the Earth by m_{e}, and G represents the constant of universal gravitation. See notebook entyy 1 (d) for Lesson 9. Yow should refresh your memory in regard to the xelative magnitude and units used for G。) The distance between the centers of gravi: g^{g} of the satellite and Earth is symbujized by r 。 What is the approximate value of r when the satellite is still on the Earth's surface?

Write your answer; then turn to page 86 .

CORRECT ANSWER: At the Earth's surface, the value of I is approximateiy 4,000 miles.

We may take the separation between centers of gravity as the xadius of the Earth, namely 4,000 miles. The sateliite is so riny compazed to the Earth that its radius is inconsequential, even in precise calculaticns

For the general situation of a satellite the centripetal io: se needed to leep it in orbit is gravitational force:

$$
F_{g}=\frac{G_{S}}{r_{s}^{m} e}
$$

But we know that centripetal force is also given by the expiessicii:

$$
F_{c}=\frac{m v^{2}}{r}
$$

In this expression for centripetal force, which mass dous m symbcilue for the motion of a satellite around the Earth?
(31)

A The mass of the satellite.
B The mass of the Earth.
C The combined mass of both Earth and satellite.

YOUR ANSWER --- B

Refer to Figure 3 on page 1i5. Berween A and B, the particie moves in a straight line. Assuming that the speed is uniform as directed in the figure, then neither the speed nor the direction of the particle is changing. It is in dynamic equilibrium in this region and there are no unbalanced forces acting on it. The first part of your answer is, therefore, correct.

From E to F, however, the path is a smooth curve. As we have seen, a particle will traverse a curved path only if an unbalanced force acts on it to cause the direction of its velocity vector to change. There must be an unbalanced force acting on the particle from E to F_{o}. This part of your answei is therefore insoxrect.

YOUR ANSWER - - A

This doesn't even look right. And with units substituted, it comes out like thas:

$$
\begin{aligned}
& \text { Given: } G=\frac{m^{3}}{k g-s e c_{2}^{2}}, m^{2}=\mathrm{kg}^{2}, m_{s}=k g, r^{3}=m^{3} \\
& \text { Substituting: } v=\left(\frac{\mathrm{m}^{3}}{\mathrm{~kg}-\mathrm{sec}^{2}} 2\right)\left(\frac{\mathrm{kg}^{2} \mathrm{~kg}}{\mathrm{~m}^{3}}\right) \\
& v=\frac{\mathrm{kg}^{2}}{\mathrm{sec}^{2}}
\end{aligned}
$$

But velociry is not measured in the square of kilogxams per serord

So, work out the probiem carefully. Please return to page 20 and iock over the other answers.

```
YOUR ANSWER --- A
```

This does not follow from a study of the equation you just dezived.

A little earliex we showed that a proton must mowe more slowly in a gigen orbit than an electron in the same orbit with the same centripetal force applied because the proton is more massive. This probably helped you reach your conclusion.

The difficulty with this kind of reasoni, is that you axe prone co forget something. The magnetic forse acting on the proton and electron was the same for both. But in comnection with setellites, the heavier (or mure massive) sarelifte will have more force acting on it since the roice is due to gravitation. So the two situations are not the same.

Look at the equation critically. Does the mass of the satellite appear in it anywhere? What does this tell you about the dependence of the speed of the satellite on its mass?

Please return to page 52. Choose a better answer.

YOUR ANSWER -... B

There are three errors in the combined form you have selected

First, F_{c} was assumed to be directly proportional r 3 y on the basis of tough experimental evidence. Your combined form shows an friverse proportion between these two variables:

Second, $F_{\text {c }}$ was assumed to be directly proporicionel to m, also on the bastes of rough experiment. Your form shows an inverse proportion between F_{G} and m.

Thixd: Fo was assumed to be inversely proportional to x. Your chose indicates a direct proportion between these variables.

Somehow, there was an inversion of the position or ail three variables. Be sure to keep the inverse and direct proportions straight.

Please return to page 59 and select an answer that meets the conditions of the problem.

Refer to figute 2.5 on page 46 . If you plased a prece of thalk at Point B and then drew a circle around C using a piece of string of lengeh z, would this circle coincide with the one aiready there? No, it would not. Yet, by this definition, r would be the radius of the new, smaliez circie you just drew. So the radius of the original, larger circle extends more than from B to C.

Please recuxn ro page 46 and select another answex keeping the above discussion in mind.

YOUR ANSWER --- B

You're joshing us:

Make the stone massive enough, and it will pull you righe off your feet as you try to whirl it through the air at the end of a siring. A large mass has a large inertia and therefore tends to keep going in a stzaigh: , Ifne with a tremendous "determination." To overcoms this inertia of mokion for a large mass, what must be true of the magnitude of the centriperal row e?

Please return to page 26 . Choose the alcernative answer.

YOUR ANSWER --- B

You are correct. The orbital radius is the sum of the Earch's radius and the altitude, or $4,000 \mathrm{mi}+250 \mathrm{mi}=4,250 \mathrm{mi}$.

Now look at the proportionailty form of the speed equation:

$$
v=\frac{k}{\sqrt{r}}
$$

Our object is to determine the radius of a stable orbit for a new speed of $9,000 \mathrm{mi} / \mathrm{hr}$. This is half the original speed. The next step may not be necessary for everyone, but it is straightforward and recommended.

Since the radius x is the unknown, we'll solve the proportion for x.

$$
v=\frac{k}{\sqrt{r}} \quad \text { becomes } \quad \sqrt{r}=\frac{k}{v}
$$

Squaring both sides, we get:

$$
r=\frac{k}{v^{2}}
$$

At half the oziginal speed, we may write:

$$
\begin{aligned}
& r^{\prime}=\frac{k}{\left(\frac{1}{2} v\right)^{2}} \text { where } r^{\prime} \text { is the new radius. } \\
& \text { or } \quad r^{\prime}=\frac{k}{i_{w^{2}}^{2}} \quad \text { or } \quad r^{\prime}=\frac{4 k}{v^{2}}
\end{aligned}
$$

Since $r=k / v^{2}$ and $r^{\prime}=4 k / v^{2}$, then how many times as large is the new radius compared to the original radius?

Write your answez; then turn to page 94.

CORRECT ANSWER: The new radius must be 4 times as large as the oiginad radius.

In short, if the speed is to be halved, the orbital radius will have $: 0$ be quadrupied. The original radius was 4,250 miles, so the new radius wisi have to be $4 \times 4,250=17,000$ miles.

To find the altitude of the satellite, we subrract the tadius ot the Earth from the orbital radius and obtain $17,000 \mathrm{mi}-4,000 \mathrm{mi}=13,000 \mathrm{mi}$ Thus the new altitude fis 52 times as great as the oxiginal altitude. A sather surprising answer, isn't it?

Summarizing our conclusions thus far:
(1) The speed of a satellite in orbit is given by the equaion $y=\sqrt{G \frac{m^{\prime}}{r}}$
(2) The mass of a satellite does not enter into the caicuiaticns of its speed.
(3) The speed of a satellite is inversely proportional to che square root of the orbital radius.

Our last question: If we projected a satelilte from Mars, woujd its speed be the same as fix a similar orbit around the Earth? By "simila: orbic" we mean an orbit of the same radius, not the same alcitude.

How would you answer this question? (37)

A Yes.
B No.
C I den't know.

YOUR ANSWER --- D

Your answer is not correct; one of the equations given is a correct simplification of the original statement.

The original equation reads:

$$
\frac{m_{p}}{v_{p}} p_{p}^{2}=\frac{m_{e} v_{e}^{2}}{r_{e}}
$$

You are supposed to make use of the fact that the proton and election move in circies that have the same radius. That is, $r{ }^{=}{ }^{=} r_{e}$. Well, if $r_{p}=r_{e}$, then why not drop the subscripts and rewrite the equation this way:

$$
\frac{m_{p}}{v_{p}}{ }^{2}=\frac{\tilde{r}_{e} v_{e}^{2}}{r}
$$

A simplification is now possible with an r in the denominator of each fraction. Try muitiplying both sides of the equation by F_{0}. That do you gert

Please return to page 17. You should have the answer now.

YOUR ANSWER --- B

You are correct. Refer to Figure 13 on page 30 . The force F is applied over path $B C$, causing the particle to accelerate toward the center We pointed out that the particle moved away from the center by the amount $B C$ while it was moving from A to B; then it was accelerated toward the Estet. along $B C$, exactily compensating for its retreat from the center orer the pzevious path. This retreat and return would be repeated over and cvei as the string is first slackened and then tightened again. You might view this action as one in which the particle is repeatedly moving away from the erac: by the same amount that it is being accelerated toward the centet, cheielore keeping its average distance from the center the same over the circuial poth So it is possible for a particle to accelerate toward the cencez of zutarion without ever faling into it:

Please kurn to page 97.

Now, suppose we made the interval between jerks smaller and smailer as in Figure 14. This would not alter the action as described above; it would simply cause the little central accelerations to occur more frequently so that the "sawtooth" motion would begin to look smoother and smoother. Finally, when the jerks were so closely spaced as to appear smooth, the path of the particle would become a \qquad -

After completing the sentence above, please turn to page 98.

CORRECT ANSWER: When the jerks were sc closely spaced as to appear smoth, the path of the particle would become a circle.

The foregoing anaiysis was intended to help you see thar a parcheie moving in a circular path must accelerate toward the cencer concinuousiy. If you wish, you can think of a circle as being composed of an intinite number of sawteeth, the leading edge of each tooth represencing she "failing Inward" of the paxifice to compensate for its outward motion during the other part of the rooth path.

NOTEBOOK ENTRY
 Lesson 10

3. Centripetal accelecation

(a) When a parifile moves in a circle, it accelerates contruously toward the center of rotation. This acceleration is a result of a change of direction of its velocity rather than a change of magnitude. The particie does not gradually approach the center of rotation because it is falling outward continuousiy due to inertia just as fast as it is falling inward due to the central acceleration.

Now, what is che magnitude of centripetal acceleration?
Like zay orter mass in motion, a particle moving in a circle mast. obey Newton's Second Law of Motion.

As a refresher, complete this statement: the general form of Newton's Second Law may be written as
(27)
$A \quad a=\frac{F}{m}$
$B \quad a=\frac{m}{F}$

C $a=\mathrm{Fm}$
$=$

YOUR ANSWER --- A

All the known quantities have been expressed in the MKS system. You even went to some trouble to convert some of the data. This would mean that your answer could not ba presented in the CGS system.

Without committing ourselves as to the accuracy of the numerical part of the answer above, we must insist on the result being given in MKS unitu. This is not meant as a trick, but we hope that you are learning to pay closer attention to the units as well as the numerical values of your answers.

Please return to page 31 and choose another answer.

YOUR ANSWER --- B

This won't do. Youre doing some strange tricks with squares and squaie roots.

Ler's do it one step at a time. The equation is:

$$
F_{c}=\frac{m v^{2}}{r}
$$

We want v, the unknown, on the left side all alone. Hencf, we :an multiply both sides by r / m to eliminate m and firm the right side.

$$
\begin{aligned}
& F_{c} \times \frac{r}{m}=\frac{m v^{2}}{r} \times \frac{r}{m} \\
& \underset{\substack{c_{m}}}{ }=v^{2} \\
& v^{2}=\frac{F_{c} r}{m}
\end{aligned}
$$

We want v, not v^{2}, as the unknown. To do this we must take the square root of both sides. You evidently squared the right side rachey ehart taking its square root. This was your error.

Please return to page 81. Repeat the manfpulation; then choose the correct answer.

YOUR ANSWER --- A

Refer back to Figure 1 on page 76.

Of course, either of the two forces might be a pulling or a pushing force. No mention of this was made in the statement of the circumstances. However, whether the force pulls or pushes, its effect is quite the same. You may remember from your study of composition and resolution of forces in Lesson 7 that any force could be treated either way, and that there is no difference in result if we consider the force to be pulling or pushing.

Therefore, the answer you selected is not correct. You can't account for the difference in deflection on this basis.

Please return to page 76 and make another choice.

YOUR ANSWER --- B

You should be able to see the error or this answer by reviewing the situation from the point of view of inertia of motion. A proton is much more massive than an electron. Thist mass gives it more inertia. Therefore, a proton has a greater tendency to continue to move in a straight line than an electron. Now, to change its direction of motion--to make it move in a circle rather than along a straight line-you would have to exert a contripetal force on it. But if its tendency to keep moving fin a straight Ifne is stronger than that of an electron, how would this centripetal force - ompare with the force needed to duplicate the action for the electron?
$F_{C}=\operatorname{mv}^{\frac{\text { Do }}{2} / r \text { you remember how force and mass are related in the expression }}$

Please return to page 140 and choose a better answer.

YOUR ANSWER --- C

You must have gotten the column headings mixed.

Look at Trials 4 through 6. Observe that the speed is not the same in these trials; it is $2.0 \mathrm{~m} / \mathrm{sec}$ in the fourth trial, $3.0 \mathrm{~m} / \mathrm{sec}$ in the next, and $4.0 \mathrm{~m} / \mathrm{sec}$ in the next.

Observe, too, that in Trials 4 through 6 the radius is held onstant, while your answer says chat it was varied. It was varied in Trfals 7 through

Please return to page 118. Select an anoser that fits the facts.

YOUK ANSWER ——m

You are correct。 By assuming k to be dimensioniess in the kixat place and then by substitueing and discovering that fermert to be in newrons as it should, we have fuctified che initial sssumplioni

A notebook encry is called for here.

$$
\frac{\text { NOTEBOOK ENTRT }}{\text { LeESOR } 10}
$$

(19en 2)
(b) If a particle of mass $m \mathrm{~kg}$ moves in a cirele shose radius in x meves

$$
F_{c}=\frac{m v^{2}}{x} \text { newtons }
$$

(c) Vexbally, this equation may be given as: the cemripetal farte acting on a paxicle moving with uniform speed in a circle rariey directiy as the mass and che square of the speed and inverseliy as the radurs of the circle of rotation.

Lec's try a xelatively easy problera involving these toncepts.
An $80-\mathrm{kg}$ man mides in a car which makes a sudden turwo He moves along a curve of radius 20 m at a speed of $20 \mathrm{~m} / \mathrm{sec}$. Whar cemiciperal Force acts on him?

Write the equarion, make the necessary substitutions incleding units, and then solve for the centripetal force. What is the arreat answert
(17)

A 80 nc
B 260 nt
c 4,600 nt

YOUR ANSWER --- C

The unknown is the speed of the satellite. In solving an equation, ive always try to get the unknown alone on the left side of the expression, isolated from the other quantities.

In that case, you don't want to solve for the mass of the safellite.

4

Please return to page 111 and try again.

YOUR ANSWER --- C

No, this is not sc. Refer back to Figure 1 on page i6. Without going into too much detail on the subject, isn't it fairly apperent that if F^{\prime} had a greater magnitude than F, the deflection in B would tend to be shaxper that the deflection in A ? If a rubber ball is rolling along the ground past you, and you want to send it off on a new path by kiching it sideways, yous would find that the hardex you kick it at righe angles to irs pach, the sharper would it curve off.

So, here is another factor upon which the sharpness of deflection depende: the magnitude of the force applied perpendiculariy to the initial parh. But forces of larger magnicude will cause sharper deflections, not the other way around.

Please return to page 76. Consider the remaining answers logically before making your next choice.

YOUR ANSWER --- B

If you note that m, the mass of the planet, appears in the numerator of the equation:

$$
v=\sqrt{G \frac{m}{r}}
$$

this should tell you at once that there is a direct kind of relationship between mass and speed. That is, as the mass increases, the speed increases; as the mass decreases, the speed decreases.

Thus, if the mass of Mars is only about $1 / 10$ that of the Earth, then m for Mars would be $1 / 10 \mathrm{~m}_{\mathrm{e}}$. Would this make v for the Martian sarellite larger or smaller than for the terrestrial satellite?

Please return to page 135 ; select the other answer.

YOUR ANSWER --- A

Your answer implies that the orbital speed is independent of the mass of the planet around which the satellite moves. In che equation:

$$
v=\sqrt{G \frac{\mathrm{~m}_{\mathrm{e}}}{\mathrm{~L}}}
$$

we know that G is a universal constant, equally applicable zo problems involving either Earth or Mars or any other planet; we also are working on rhe basis of the same orbit around Earth and Mars, so r le the same for each case; but how does me come into the picture? The subscyipt "e" has used to indicate that we were speaking of the mass of the Earth. For a Maytian satellite, we would have to replace m_{e} with m_{m}, the mass of Mars。

From this, it should be clear that the oxbisal speed of the sareilise is certainly dependent upon the mass of the planet azound which $x t$ moves. The mass of Mar's is about $1 / 10$ that of the Earch.

Please return to page 94 and pick an alternarive answex.

YOUR ANSWER --- A

This statement is not true: The particle is moving at uniiorm speed. All this means is that it traverses equal distances along the arcin equal time. But velocity is a vector quantity that can be fully described only by specifying both its magnitude and its direction. Two velocities may be said to be the same only if their magnitudes are equal and if they have the same direction.

A particle moving in a circle at any given instant in time has a velocity directed along the tangent to the circle at that point. We call chis the instantaneous velocity. This concept will be more fully expiained a bir later. Refer to Figure 8 on page 146. The tangent is, of course, perpendicular to the radius at that point, so the vector \vec{v}_{1} is drawn at right angles to its radius ($O P$) and the vector $\overrightarrow{V_{2}}$ is similarly drawn perpendicular to ics radius ($O P^{\prime}$). Now, do the instantaneous velccities $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ have the same direction? Can they be said to be the "same?"

Please return to page 146 . Select the correct answer.

120

YOUR ANSWER --- D

This is incomplete reasoning. The equation definitely gives the required information.

$$
v=\sqrt{G \frac{m_{e}}{r}}
$$

Here's a clue by analogy. In the study of falling bodies neat the Earth's surface, we found that the final speed of a stone as it stitikes the ground is given by the relation:
$v=g t$
if it staxted from rest. In this equation, g is the acceleration dee so gravity, while t is the time of fall. Now we nowe that whe mass withe stone does not appear in the equation. This means that the innal speed oit the failing body does not depend on its mass at all because, if a dependency enisyed between speed and mass, then mass would show up in the equation.

Now look at the equation above. Does the mass of the satelifte appeaz in the equation? Do you remember that m_{s} canceled out during the simplification process? Now use your judgment.

Please return to page 52 and choose a better answer.

YOUR ANSWER --- A

You are correct. The mass of the Earth is not at all involved in :his expression.

Thus far we have:
Centripetal force supplied by gravity:

$$
F_{g}=G \frac{m}{s}_{m_{2}^{m}}^{2}
$$

and the general equation for centripetal force is:

$$
\mathrm{F}_{\mathrm{c}}=\frac{\mathrm{m}_{\mathrm{s}} \underline{v}^{2}}{\mathrm{r}}
$$

Note that we are using m_{s} ratiner than m in the second equation.
Since both expressions give the centripetal force on the sateliive, then $F_{g}=F_{C}$, and we can equate the right sides of the equations. Thus,

$$
\frac{\mathrm{m}_{s} v^{2}}{\mathrm{r}}=G_{\mathrm{m}_{\mathrm{s}}}^{\mathrm{m}^{2} \mathrm{e}} \text { (Copy this on scrap paper } r_{0} \text {) }
$$

We are trying to answer the question: How fast must the satedfte move to stay in orbir? To ger the equation in the form most suinabie rox answering this directly, what should you solve it for?
(32)

A \mathbf{Y}
B v
C m_{s}
D I don't know.

We have just shown that $F_{c}=k_{m v}{ }^{2} / \mathrm{r}$ comes out in newtons when k is assumed to be unity and dimensionless and when the proper MKS units are substituted for the other quantities.

If, as you say, k is also measured in newtons, then we wovid have:

$$
\begin{aligned}
F_{c} & =\begin{array}{c}
k \\
\text { (newtons) }
\end{array} \frac{\mathrm{mv}^{2}}{\mathrm{r}} \\
\text { or } \quad \mathrm{F}_{\mathrm{c}} & =\text { (newtons) } \times \text { (newtons) } \\
\mathrm{F}_{\mathrm{c}} & =\text { (newtons) }{ }^{2}
\end{aligned}
$$

So you see that taking k as measured in newtons forces us ro come to an impossible conclusion. Force cannot be measured in (newtons) ${ }^{2}$. Hence, k cannot be measured in newtons.

Please return to page 149 and make a better selection.

YOUR ANSWER --- A

You have made a very common error. Your reasoning probably werit something like chis: since the centripetal force puils inward cowazd the eenter of the circle, then when it in removed by cutting the sting, the particle will move in the opposite direction or outward away fym the cence: along the radius.

This is not so. You must remember that the particle is moving at a tangent to the citcie at every instant in time and that the centripead torae is applied for the purpose of changing the motion from innear to circulat wetion. So, it the cencripetal force causes the motion to change fyom lineaw to citcular, the removal of the force must permit the patilcie to revirn to linear motion ajong the same line it was foilowing at the instent when the srring was cut. Ett was the particle flying outward from the center along Whe yadius at the instant of cutting? Which way was it ilying?

You should have no difficulty in choosing the correct answer now. Please return to page 150.

YOUR ANSWER --- B

You are correct. You can see that the curved part of the particle's path in B is longer than the curved path in A. Now let's see what rhis means.

TIME OF FORCE ACTION

(A)

(B)

Figure 2

A moving particle will continue to change direction only as long as an unbalanced force acts on it. The moment the force is removed, the parilcie is restored to dynamic equilibrium and returns to its uniform velociry moxion. Since a curve in a path signifies steadily changing direction, then the unbalanced force must be acting on the particle throughout the time that it is moving in the curved path. Figure 2 shows the relative durations of the forces for the two cases.

Please go on to page 115.

To check your gtasp of this idea, suppose you now refer to figure 3 .

Figure 3
Over which ranges of the particle's path is there no unbalanced ro:ce acting on it? (If you wish to see the information on the previous page once more before answering the question, turn to page 114.)
(3)

A A to C and D to E.
$B \quad A$ to B and E to F.
$C A$ to C and F to G.
D Only over A to C.

YOUR ANSWER --- C

When you say this, you impiy that the centripetai force needed to produce a certain circular path at a certain speed is completely independenx of the mass of the moving particle. Surely you can'r mean that! the dependence is evident both from your own experience in whirifing light and heavy objects on strings and from the mathematical analysis we have just. completed. The following expression definitely states that the force required is directly proportional to the mass of the moving particie.

$$
F_{c}=\frac{m v^{2}}{r}
$$

The foxce needed to keep a proton in the same cirche at the same speed as an electron is very different from the fotte appled na the electuon

Please return to page 140 and select a better answer.

YOUR ANSWER ---- B

You are correct in your selection of this answer.
The fact that we do not get force units on the right side of the expression above shows that one (or more) of the followirg must be rxue:

```
F may not be drectly proportional to \(m\), or \(F_{c}\) may not be directly proportional to \(v\),
or }\mp@subsup{F}{C}{}\mathrm{ may nor be inversely proporsional ro r,
or k may not be unity of it may have units of its own or borh.
Shori of arigotows derivation of the equation for the magnitude of centriperal force in terms of the mass and speed of the rokaking parmicle and the xadius of the circie it describes, there is only one othe: way to find out which of the above statements is or are actual fact, We mast perform a quantitative experiment in which we determine the actual eftere of \(m, v\), and \(x\) on the centripetal force.
```

Figure 11 is a chaxt showing the results of one possible experiment along these lines. Copy this chart into your notebook.

DETERMINING THE RELATIONSHIP OF F_{c} TO m , v, AND r.

	$\begin{gathered} \text { MASS }(m) \\ K G \end{gathered}$	$\begin{aligned} & \text { SPEED (v) } \\ & \text { M/SEC } \end{aligned}$	${\underset{M}{\text { RADIUS }}}^{(r)}$	$\begin{aligned} & \text { MEASURED FORCE IN } \\ & \text { NEWTONS }\left(\mathrm{F}_{\mathrm{C}}\right) \end{aligned}$
TRIA] 1	1.0	1.0	1.0	1.0
TRIAL 2	2.0	1.0	1.0	2.0
TRIAL 3	3.0	2	1.0	3.0
TRIA ${ }^{4}$	1.0	2.0	1.0	4.0
TRIAL 3	1.0	3.0	1.0	9.0
TRIAL 6	1.0	4.0	1.0	16.0
TRIAL 7	1.0	1.0	2.0	0.50
TRIAL 8	1.0	1.0	3.0	0,33
TRIAL 9	1.0	1.0	4.0	0.25

Figure 11

Please go on to page 118 .

Study the numexical resuits of the "experiment" careftily. You will see almost at once that the experiment was performed by allowing only one variable at a rime to change value while observations were made of the effect of this variation on the centriperal force, F_{c} All units used ade preferred MKS units. The numbers are given to rwo significant figures, except in one case where we violated the rules just a bia to rexain claidy.

As a random example, look at the figures on page 117 for Trial $\%$ The mass of the particle was 1.0 kg ; its ifneat speed in the cixcle was $10 \mathrm{~m} / \mathrm{sec}$; the radius of the circle of rotation was 2.0 m . Then when the cenripeldi force needed to maintain this circular motion was measured, it turned ous to be 0.50 nt .
 suppose you pick out the only true statement below.
(14)

A In Trials 1 through 3 mass and radius were held constant, while the speed was made to vary.

B In Trials 4 through 6 mass and radius were held constant, while the speed was made to vary.

C In Trials 4 through 9 mass and speed were held constant, while the radius was varied. .

D In Trials 7 through 9 speed and radius were held constant, winze the mass was varied.

YOUR ANSWER --- C

Possibly you are not sufficiently familiar with the characteristics of a parabola to answer this question. Without going into unnecessary detial dir this subject, we can show you quite easily why curve DH cannot be part ot a parabola.

Refer again to Figure 4 on page 43. Your artention was direczed wo the fact that the string's length was constant during the intervai when the patticle was describing curve DH. If you tried to draw a parabola (see Figuie 6 ; with a pencil on one end of a string while the remote end ot the stiling was connecred to a fixed point, you would find it impossible to do so. A pazabola is the kind of curve that opens ourward as it is drawn to greacer and greater lengths; its two sides never xejoin each ocher. A smail portion or a parabola xesembles a smali poxtion of an equivalent elifpse. The difterence is that the elifpse is a closed tigure while the parabole is not.

Figure 6
In Figure 6, you can see that there is no point inside a paraboia tha: can be described as a cencer. If you select a point such as 0, it is imposaidie ro draw a parabola using ifixed lengths of steing as radif from this point. We will explain the focus later.

Please return to page 44 and try again.

YOUR ANSWER --- C

You are correct: Good work: You obsersed that the mase (mes of the satellite does not appear in the equation; hense the oxbital speed (v) is completely independent of the sarellite's mass. This meatis that a large, heavy satelife must orbit the Earth at the same speed as a smali, ifght one if both are to have the same orbit.

Is this resuit surprising? In some ways it is because one might have the feeling that a massive satellite should move more slowiy in a particular orbit than a large one. This intuitive thinking obviously has a inaw in it; we tend to forget. that increasing the mass of a satelicte does two shings which cancel each ocher: (1) it increases the requred centripetal force but (2) ft also fncreases the gravitational pull of the Eateh on the sacelifte, thereby providing the extra cencripetal fotce.

All right: Are you ready to work on a practical problem involying satellite speed in a predetermined orbit? We hope so.

We want to orbit a satellite at 400 km above the Earch. What speed in meters per second will it need to stay in this orbit? iec's work to three sign:ficant figures. The data you will need to take down are:

$$
\begin{aligned}
& \mathrm{G}=0.667 \times 10^{-10} \mathrm{~m}^{3} / \mathrm{kg}-\mathrm{sec}^{2} \\
& \mathrm{~m}_{\mathrm{e}}=5.98 \times 10^{24} \mathrm{~kg}
\end{aligned}
$$

Aititude of satellite $=400 \mathrm{~km}$
Radius of Eaxth $=6.37 \times 10^{6}$ meters

Now turn to page 121.

We must firct establish the value of r, the orbital radius. Since $400 \mathrm{~km}=4.00 \times 10^{5} \mathrm{~m}$, we will add this figure to the radius or the Earth to obtain the radius of the satellite's orbit.

To add figures in scientific notation, we must be sure che exponents are the same, so we'11 convert 4.00×10^{5} to 0.400×10^{6} and then add:

$$
\begin{array}{r}
6.37 \times 10^{6} \mathrm{~m} \\
+ \\
\hline
\end{array} \begin{aligned}
& 0.40 \times 10^{6} \mathrm{~m} \\
& \mathrm{r}=
\end{aligned} 6.77 \times 10^{6} \mathrm{~m}
$$

Figure 19
We now have what we need to substitute in the speed equarion:

$$
v=\sqrt{G_{\mathrm{L}}^{\mathrm{m}}}=\sqrt{\frac{0.667 \times 10^{-10} \times 5.98 \times 10^{24}}{6.77 \times 10^{6}}}
$$

How about a little exercise in arithmetic? Work it out and get rhe value of v in meters per second. Write your answer.

Please turn to page 122 for an answer check.

CORRECT ANSWER: To three significant figures, whe sacellite's velocisy is $\Psi \geqslant 7,670$ meters per second.

This turns out co be about 17,200 miles per hour. Fow may reeall that out orbiting astronauts traveled at just about this speed as long as they remained in orbit, aearly 250 miles above che Earth ${ }^{\circ}$ s surfince

Looking back at what we've accomplished thus far; we have answered the first two of our seif-imposed questions. First, the speed equired oit a satellite to keep it fr orbit is given by the following equation:

$$
v=\sqrt{C^{m_{e}}}
$$

Second, we have fownd that the masis of the sacelitie does not witect the speed sdiculat: \hat{y} ons.

Our next question was: How does the radius or the orbit atiect ahe speed required to keep the satelinte there? We can get the answer to chis directy from an inspection of the equation.

The requixed speed varies inversely as what?
(35)

A Radius of the orbit.
B As the square of the radius.
C. As the square root of the radius.

You're right: Both answers are wrong.

Since you were able so recognize the errors in the answers given, we expert that you probably have the right one.

CORRECT ANSWER: The maximum speed of the ball is 4.2 meters per sesond.

$$
\text { The solution: } \begin{aligned}
v & =\sqrt{\frac{F_{c} X}{m}}=\sqrt{\frac{49 \mathrm{nt} x 0.36 \mathrm{~m}}{0.98 \mathrm{~kg}}} \\
v & =\sqrt{18} \mathrm{~m} / \mathrm{sec}=4.2 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

If $F_{C}, I_{\text {, }}$ and m are all in MKS units, it almost goes without saying that the velocity must come our in meters per second. But if you're interested in proving it., look at this:

Since a newton is a kilogram-meter per second ${ }^{2}$, then:

$$
\sqrt{\frac{n \varepsilon \times m}{k g}}=\sqrt{\frac{\frac{k g-m}{\mathrm{sec}^{2} \times m}}{\mathrm{~kg}}}
$$

Bus. kg in the denominator cancels kg in the numerator, and $\mathrm{m} x \mathrm{~mm}$ m^{2}, so we come out with:

$$
\sqrt{\frac{m^{2}}{\sec ^{2}}}
$$

Since this fraction is under the radical the final unit for v is thes.

Please go on to page 124.

Our final tliustrative problem in the applicacions of centripersi ic:ce will deal with the motions of subatomit paxticles under special conditiors In certain types of particle accelerators or "atom smashers," as weil as in other practical devices, charged particles such as electrons, protons, alpha particles, and so on are whirled around in circular parhs by electilc and magnetic forces. In particular, magnetic force is often used to exert the required centripetal effect, that is, to keep the particles moving in a circle rather than flying off at a rangent. Magnetic forces are like any other forces; they can change the speed or direction of motion of a moving mass. If you wish, you can picture a magnetic force as behaving iike the string that constrained the ball or the stone to a circular path.

In what direction must the magnetic force act?

A Along a tangent to the circle in which the particie moves.
B At right angles to the tangent of the cirale in which the paryxale moves.

```
YOUR ANSWER --- D
```

You must have gotten the column headings mixed.

In Trials 7 through 9 the mass and speed are kept constant, while the radius is varied. The latter is taken first at 2.0 m , then at 3.0 m , and finally at 4.0 m . So you have chosen an incorrect answer.

Please retura to page 118 . Then please make anocher selection.

```
YOUR ANSWER --- D
```

You didn't read the specifications of the problem with sufficient care. In Figure 1B on page 76, the same particle is acted upon by the downwayd force. If the particles are the same in both cases, how could the mass rharge from one case to the next?

You can avoid this type of error by exercising care in reading and interpreting each question.

Please return to page 76 and make a new selection.

YOUR ANSWER --- A

The unknown is the speed of the satellite. Don't you always try to get the unknown on the left side of the equation, alone and isolated from the other terms? Of course you do.

Then, please don't solve for the radius of the orbit.

Return to page 111 and choose a better answer.

YOUR ANSWER --- ©

This is not correct. The fact that k is unity is not shown by the substitution of units in the proportionality above. The only way do detemine the numerical value of a constant like k is to do an experiment in whish ah the waikes are measured. For example, in the chari given, it is evident that k equals i since nowhere in. the list of figures would any ocher yalue yield the coxect result for F_{c} for the given values of m, q, and r.

Refer to Figure 11 on page 117.
Choose one of the trials at random, say, Txial 6. Only ify $=$, car you obsinn a force of 16.0 nt for a mass of 1 kg , a speed of $4 \mathrm{~m} / \mathrm{sec}$, shat radius of 1.0 m :

$$
F_{c}=k \frac{m v^{2}}{r}=1 \times \frac{1 \mathrm{~kg} \times 16 \mathrm{~m}^{2}}{1 \mathrm{~m}}=16.0 \mathrm{n} \mathrm{x}
$$

Please recurn to page 149 and choose another answer.

This page has been inserted to maintain continuity of text. It is not intended to convey lesson information.

You Exe coxrect. Despite the initom speed or the parqioie, ire difection is constantiy changing; hence the veiociay wis difienen: intit the velosiny $\overrightarrow{\boldsymbol{w}_{2}}$.

Retex to Figuse 8 on page 146.
Juck what kind of velocicies are we dealing with here we spest bi ψ_{i}^{*} as the instantaneous velocity of the parcicie at poinw p; inkewise, $?$
 has no time duration; ard if no rime is abiowed fur che pervivie "s fove.

 paidicle wili move a minute distance. The moment we can "see" it in itu"Atu. even though the distance it travels may be ridiculousiy smats ouv fin.tit of inscentaneous velocity becomes real and accual.

Picturing the instantaneous velocity chis way, we then dxew the :
to represent it along the \qquad so the circle at the puimt an ques.t.

Wxire the missing word. Then rurn to page 13 .

CORRECT ANSWER: WE d aw the vector representing the instantaneous velc:1iy along the tangent to the cirale at she point in question

Rerex again ro Figure 8 on page 146. Ovet a bxief inscant in ime, the dicertion of motion or a particie in a circular pach is considered co be aiong the sangent to the cixcle ar that point. So in Figure 8 on page 46 , Vit is the tangent to the circie whexe xadics OP intersects it; similay iy, wig is the tangent ar the point of intersection of tadius OP".

NOTEBOOK ENTRY
Lesson 10
D. Instancaneous Velocity
(a) Instantaneous velocity is defined as che vefocity of a paicicle duting an intinisesimal time interval, or a time incervai ao shorit as to be considered negiligible.
(b) The direction of the instantaneous velocity of a particle mowng in a circulax path is that of the tangent to the circle at the point in question, in the direction of motion.
(c) Since the tangent is pexpendicular to the radius at the point in question, then the dizevision of the instantaneous velocity is pexpendicuiar to char radius. (Nose: Copy Figure 8 on page $\$ 46$.)

Returning to the physics of the boy and the particle he deflects, the foxce exerted on the parcicle by nis hand must be directed inward along the particular xadies the string happens to form at that instant. In Figute 8 , $O P$ and $O P^{\prime}$ are two such radif; hence \vec{F}_{1} symbolizes the force at one ingtint and \vec{F}_{2} symbolizes the force a short time later. What is the angular relationship berween each force and the corresponding velocity vector?

16
A 0 degrees.
E 90 degrees.

```
YOUR ANSWER --- D
```

You may never have studied the properties of ellipses, parabolas, ano orher curves of this family, but you certainly have worked with circies.

We'll work on the assumption that you know nothing about any curved figure except the circle.

How do you define a circle? There are several definitions chat can be quoted, but we'll consider only this one: a circle is a geometric figuze having a center such that this center is equidistant from all points that lie on the circle.

All right? Now look at curve DH in Figure 4 on page 43. The paxzicies may be considered to be poirts that "Iie on che curve." Aze ali of the paritse positions equidistant from point 0 ? If they are, tinen $D H$ is the are $5 t$ a circle; if they are not, then $D H$ may be part of an ellipse, parabolas hypevbola, cycloid, cardioid, or what have you.

Please return to page 44. The right answer is almost self-evident

```
YOUR ANSWER --- A
```

You are coriect. The procon has more inerria and herse a stronger inclinarion to maintain straight-ine motion. A gieater torce is needed to make it duplicate the elestrer's merion.

Now iet's zeturn :o the oxiginal electron-proton problem: It should be somewher cieaxer to yon why a proton acted upon by the same rozce as an electron and moving in the same circie must move more slowly. If it moves with less speed, then it is possible for the same force to produce the same radius of rocation.

Before ancinuing, piease tum ro page 157 in the biue appindix

NOTEBOOK CHECK

Refer to norebook entry 2(h) under Newton's Laws of Motion llesson 8), Which of the foliowing is the best summary of this notebook item?
(24)

A The aceelexetion produced by an unbalanced force is smainer if tie mass of the budy being acceleraced is lazger.
B The acceleration produced by an unbaianced force acting on a mass takes place in the direccion of the force.

C If the mass is measured in kilograms and the roxe in newrons, then che resuiling acceleration will be in meters per second per secund.

D Acceleration dies not occur merely because forces act on a rass. A second condition is that the forces must be unbalanced.

YOUR ANSWER - B- B

You are correct.

Using all four assumptions, we then went ahead to substiture unita ici the quantities on the right side of the expression above, omitting k iram consideration since we had assumed it to be unity and dimensioniess. Aite. simplifying, we found that the units of mu/r came out kg/sec. A newton, however, is a $\mathrm{kg}-\mathrm{m} / \mathrm{sec}^{\llcorner }$, so we see that the relation will not give us newacins

We are then forced to the conclusion that one or moxe of the iontuix.i: statements are true:

Perhaps F_{c} is not directly proportional to m. Perhaps F_{C} is not directly proportional to v. Perhaps F_{C} is not inversely proportional to r. Perhaps k does not equal unity. Perhaps k has units of its own.

Each one of these invalidates onc of the assumptions we made.

Now return to the original question and choose the correct answe:
Turn to page 66.

You are correct. The value of m_{e} in the speed equation would be different. Since v is a function of the mass of the planet around which the satellite orbits, then y would be different for a Martian satellite in an orbit of the same radius as that of a similar Earth satellite.

Here are the comparative masses of the two planets:

Very roughly, the Earth has about 10 times the mass of Mars. Using the equation:

$$
v=\sqrt{\frac{\mathrm{G}}{\mathrm{~m}}}
$$

(where $m=$ the mass of the particular planet about which we want to orbit a satellite), let's answer this question: Would a Martian satellite travel more slowly or more rapidly than an Earth satelitite having the same orbital radius?
(38)

A More slowly.
B More rapidly.

YOUR ANSWER --- A

You overlooked the radical. Perhaps if you rewrite the equation this way:

$$
v=\sqrt{G} \frac{\sqrt{m_{e}}}{\sqrt{r}}
$$

(a perfectly legitimate form), you can see that the speed is not inversely proportional to the radius of the orbit. The radius appears under the radical. on the right side of the expression.

Please return co page 122 and choose a bectex answer.

YOUR ANSWER --- B

Judging from this answer, we would say that you did all of the arithmetic properly but omitted the last step called for by the equation. After multiplying and dividing all the factors under the radical, what must you do? Remember, you are trying to find v, not v^{2}.

Please return to page 31. You should be able to get the right answer now.

YOUR ANSWER --- B

You forgot the radical. The speed v is directly proportional to the square root of the planet's mass.

Please return to page 40 and select a more reasonable answer.

You are correct. Since the radii are equal, they may be eliminated by multiplying both sides of the original equation by r.

You have been asked to find the speed that the proton would need to have to rotate in a circle of the same radius as the electron when the same magnetic force acts on it. The unknown in the above equation is, therefore, v_{p}. First solving for $v_{p}{ }^{2}$ and then taking the square root of both sicies, we have:

$$
v_{p}=v_{e} \sqrt{\frac{m_{e}}{m_{p}}}
$$

All the quantities at the right are known:

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{e}}=3.0 \times 10^{6} \mathrm{~m} / \mathrm{sec} \\
& \mathrm{~m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg} \\
& \mathrm{~m}_{\mathrm{p}}=1.6 \times 10^{-27 \mathrm{~kg}}
\end{aligned}
$$

So the solution is now a purely mechanical matter. Solve for v_{p} in meters per second to two significant figures and write your answer before turning to page 140.

CORRECT ANSWER: $v_{p}=7.2 \times 10^{4} \mathrm{~m} / \mathrm{sec}$ 。

The substitutions and numerical solution follow:

$$
\begin{aligned}
& \mathbf{v}_{\mathrm{p}}=\mathrm{v}_{\mathrm{e}} \sqrt{\frac{\mathrm{~m}_{\mathrm{e}}}{\mathrm{~m}_{\mathrm{p}}}=3.0 \times 10^{5} \sqrt{\frac{9.1 \times 10^{-31}}{1.6 \times 10^{-27}}}} \\
& \mathrm{v}_{\mathrm{p}}=3.0 \times 10^{6} \sqrt{5.7 \times 10^{-4}} \\
& v_{\mathrm{p}}=3.0 \times 10^{6} \times 2.4 \times 10^{-2}=7.2 \times 10^{4} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

The result shows that the speed of the proton will be about i/40th. that of the electron.

We want you to be very clear in your own mind regarding the inevitability of this result. The proton is a massive particle compared to the electron--about 1,840 times as massive.

If you wanted a proton to move in a circle of the same radius as that of the electron's path and at the same speed, the centripetal force applied by the magnetic field would have to be:
(23)

A Larger than that applied to the electron.
B Smaller than that applied to the electron.
C The same as that applied to the electron.

YOUR ANSWER --- A

Well, let's see. First let's write the equation:

$$
F_{c}=\frac{m v^{2}}{r}
$$

Now let's substitute:

$$
\mathrm{F}_{\mathrm{c}}=\frac{80 \mathrm{~kg} \times(20 \mathrm{~m} / \mathrm{sec})^{2}}{20 \mathrm{~m}}
$$

So F_{c} is obtained by squaring the speed, multiplying by the mass, and then dividing by the radius. In order to get an answer of 80 nt as you did, you must have forgotten to square the speed. Because you see if you don't square $20 \mathrm{~m} / \mathrm{sec}$, you can cancel this number against the 20 m in the denominator, leaving 80 as the numerical result.

Please return to page 104. Go through the calculation again and determine the correct answer.

YOUR ANSWER ———A.

This is not an assumption!

We're coumitted to the MKS system by mutual agreement: Fofce is measured in newtsus in the MKS system. Therefore, we shoud set up every relationship in which force is involved so that the force does come out in newtons.

For the sake of consistency and mutual understanding becween ais workers in physics, we musc never allow ourselves to be foxcea into a situation where our wasic quantities cannot be measured in the units that everyone has agreed to use. This is a self-imposed "must." Thus, we must measure mass in kilograms, speed in meters per second, iadii in meters, force in newtons, and so forth.

Whenever we develop a new physical equation, we do what is necessary to (1) phrase the equation to fit the experimental evidence. That is, the equation must work in all real-life situations in which it appeais. Then, (2) we must adjust the conscant of proportionality so that ali che varlablea may be expressed in the chosen units of measure.

You should remember that we did exactly this in obtaining the iné form of the gravitational force equation:

$$
F_{g}=G \frac{m_{i} m_{2}}{m_{2}}
$$

We were forced to make $G=6.7 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg}^{-\mathrm{sec}^{2}}$ in order to be able to express m in kilograms, r in meters, and F_{g} in newtons.

Please return to page 15. Make the other selection。

```
YOUR ANSWER --- A
```

No, you're allowing your terms to get mixed. Refer to Figure 8 on page 146. Consider $\overrightarrow{F_{1}}$. The direction of the $\overrightarrow{F_{1}}$ vector is inward along the radius $O P$. This force must be directed along the radius, as we emphasized previously, because reaction to it keeps the string taut. Thus the ine of action of $\overrightarrow{F_{1}}$ is along $O P$.

The corresponding velocity vector at the instant when $\overrightarrow{F_{1}}$ is applied is \vec{v}_{1}. But we have shown that \vec{v}_{1} lies along the tangent at the point where this vector touches the circle.

Then at the instant when $\overrightarrow{F_{1}}$ exists as a real force, it cannot be applied to the velocity vector at 0 degrees, can it? What is the angular relationship of a radius to a tangent at a given point on any circle?

Please return to page 131. The alternative answer is clearly the correct one.

YOUR ANISWER …- D

We are attempiling to solve vise equation in surh form as ko obtain the spesci of the sswellite in orbit. The speed of the satelitit is designated by v in this expression:

$$
\frac{m_{s} s^{2}}{x^{2}} \approx G \frac{m_{s}^{m}}{x^{2}}
$$

Since we want to find w, then the usual procedure should be followed: manpuiate the terms aigebralcaliy, doing whatewer is requited ko shitt them legymmafely, canceitng where pessible, until you wind up witio all alone on the left side of the equatiun. There are parious ways co do chis; we'li show you the method we prefer in a moment.

In any event, if you want v alone on the lets aide, the equapion ghoutd be soiwed for this texm.

To confinue, please turn ro page 20.

YOUR ANSWER --- A

Look again!

In Trials i through 3 the mass was varied, not held constant, while the other two quantities were not changed. Note that the particle is given a mass of 1.0 kg in Trial $1,2.0 \mathrm{~kg}$ in $\operatorname{Tr} \mathrm{i}$ al 2 , and 3.0 kg in Trial 3. Note also that the speed was not made to vary at all, being held at 1.0 $\mathrm{m} / \mathrm{sec}$ throughout these three trials.

Please return to page 118. Then pick an alternative answer.

YOUR ANSWER --- A

You are cortect. Figure 7 below is a magnified reproduction of curve DH of Exguie 4 on page 43. The string is held at constant length; hence it serves as a radius of the are described by rotating the radius around fixed point 0 . The force applied by the boy's hand on the particle as it moves along arc $D H$ is directed inward toward the center at all times so that the parcicle is forced to change its direction in a smooth, continuous manner.

Force of boy's hand towaxd pozins 0 。

Figure 7

Figure 8

We hawe added tangents to the circular arc to show how the radif intersect the circle. As you must know from plane geomeryy, a radius is alwaya perpendicular to a tangent at the common point of intersection. Now let us use this fact to crystallize a very important concept relating the direction of the boy's force to the direction of the parcicle morion at any given instent.

In Figure 8 above, parcicle P is shown in two different posirions as x moves in the arc produced by the force of the boy's hand on the string. It is moving with uniform speed. Does this mean that its velocity at the finstant shown by v_{i} is the same as its velocity at the instant shown by v_{2} ?

A Yes.
B No.

YOUR ANSWER --... A

You are absolutely correct. Testing this is easy:

(Trial i)	$1.0 \mathrm{~m} / \mathrm{sec}$
(Trial $4 ;$	$2.0 \mathrm{~m} / \mathrm{sec}$
(Trial 5)	$3.0 \mathrm{~m} / \mathrm{sec}$
(Trial 6)	$4.0 \mathrm{~m} / \mathrm{sec}$

$\underline{k v^{2}}=F_{\text {(raking } k=1)}^{(k)}$
$\mathrm{k}(1)_{2}^{2}=1.0 \mathrm{nt}$
$k(2)^{2}=4.0 \mathrm{nt}$
$\mathrm{k}(3)^{2}=9.0 \mathrm{nt}$
$\mathrm{k}(4)^{2}=16.0$ nt

The values in the second column are identical with those given in the chart; hence $F_{\varepsilon}=\mathrm{kv}^{2}$ is correct. That is, the centriperal force varies as the square of the speed of the particle in ciraulat motion:

Our oxiginal assumption that the centripetal fove is directly proporcional to the speed thus proves to have been incorrect.

As the last step, we must check the third assumption we made, namely, that $F_{c}=k / r$, or that the centripetal force is inversely proportional to the radius of rotation. Assuming $k=1$, perform steps similat to those above. You will find in Trials $1,7,8$, and 9 that: as $x ~ 1 s$ doubled from 1.0 m to 2.0 m , the value of F_{c} is reduced to one-half; as is iripled from 1.0 m to 3.0 m , the value of F_{c} is reduced to one-third; and as is quadrupled, che centripetal force is reduced to one-fourch its origingi magnitude,

Do the data for these stials indicate an inverse proportion berween F_{c} and r ? Write your answer; then turn to page 148 .

CORRECT ANSWER: Yea, the dars for Trials $1,7,8$, and 9 indicate that F is fryensely proportional to the radius of rotationo

Thus, $F_{0}=\frac{k}{r}$.
Bo you remember that we mede a fourth assumption, namely, that k is The experinental results in Trial alone demonstrate the ehis assumpion was justified becasse if k were any number except untry; we corifon not get e force of 1 ne whena mass of 1 kg is whirled ac $1 \mathrm{~m} / \mathrm{sec}$ in a circle ort $\mathbb{1}$. radius. Whecher or not k is dimensionless will be prowed wery shorly.

Before we dochis, we want to write the new, orrect form of whe combined propoxition. Three of the foxu original assumptons are stie sane as they were, but ome of them has thanged:

FFr kra We have showt chis co be juscirted.
$\mathrm{F}_{\mathrm{C}} \mathrm{wv}^{2}$, The initial assumption (Fe kv) has been shown to be wrong.
$F_{c}=\mathrm{k} / \mathrm{r}$ We have showe this co be fustified.
$k-1 \quad$ We have shown this ro be fustifiled.
Now we want you co combine chese proportionalities just as you did before, taking into account the change in the second one.

Write your answer. Then tuxn to page 149.

CORRECT ANSWER: The chree separate proportions may be combined in the form:

$$
F_{c}=k \frac{\mathrm{mv}^{2}}{\mathrm{r}} \text { where } k=1
$$

We do not yet know, however, whether k is dimensionless. We shall proceed to find out.

To do this, we'll substitute MKS units on the right side of the equation and simplify.

$$
\begin{aligned}
& F_{c}=\frac{\mathrm{mv}^{2}}{r}=\frac{(\mathrm{kg}) \times(\mathrm{m} / \mathrm{sec})^{2}}{m} \\
& F_{c}=\frac{\mathrm{kg} \times \frac{\mathrm{m}^{2}}{\mathrm{sec}^{2}}}{\mathrm{~m}} \\
& \mathrm{~F}_{\mathrm{c}}=\frac{\mathrm{kg}-\mathrm{m}}{\mathrm{sec}^{2}}=\text { newtons }
\end{aligned}
$$

You will have observed that we did not introduce k or units for it in the above substitution. Despite this, we find that the relation $F_{c} \mathrm{mv}^{2} / \mathrm{r}$ does turn out to have newtons as the unit of measure.

What does this tell you about the constant of proportionality, k ?

A k is measured in newtons.
B k is dimensionless.
$C \quad k$ has a numerical value of unity.

YOUR ANSWER --- B

You are correct. At any instant the force causing the circular morion lies along the radius while the corrésponding velocity vector fis tangent to the cixcle. A radiss is always perpendicular to a tangent at a given point on whe circle.

So we must conclude that any particle in motion will follow a curwed path only if an inward radial force is applied to it, this force being instamtaneously perpendicular to the direction of the particle's motion at that Anstant.

This inward radial force is called centripetal (sen trip et al) force. It is the force applied by the center of rotarion on the rotaetng body. (We will discuss "centrifugal force" later in this lesson.)

Referring once again to Figure 8 on page 146 , imagine that someone cuts the string when the particle is at position P^{\prime}. At the instant of cutting, the centripetal force F_{2} ceases to exist, since it is only through the medium of a continuous string that the center can apply the required force to the parcicle. Then, at the instant of cutting and thereafter, how will the paxticle move if nothing disturbs it?
(7)

A Outward, along the radius, away from the center.
B Inward, along the radius, toward the center.
C At a tangent to the circle, along the line of \vec{v}_{2} :

YOUR ANSWER -.- C

Well, let's look at the speed equation again:

$$
v=\sqrt{\sigma_{r}^{m} e}
$$

We want to know if v will be the same for a Martian sateilite traveling in an orbit of the same radius (r) as an Earth sarellite. Looking at the terms on the right, we know that:
(i) G is a universal constant and hence is the same on Mars as on Earth or anywhere eise in the universe.
(2) r is the same for the Martian and Earth satellites. This is given in the conditions of the problem.
(3) m_{e} is the mass of the Earth. This is the mass we use in calculating the orbit of an Earth satellite. To calculate the orbit of a Martian satellite, we would use the mass of Mars; hence the value of mill be different for the two calculations. The mass of Mars is about $1 / 10$ that of the Earth.

If one of the terms on the right side of the equation is different for two problem solutions, can the dependent variable on the left be the same in both cases?

Please return to page 94 and choose the right answer.

You are correct. You remembered that in any situation involving action and reaction (Newton's. Third Law), there are two bodies upon which the forces act. Call the string Body A; Call the ball Body B; then Body. A exerts a centripetal force on Body B, so Body B reacts by exerting a centrifugal force on Body A.

The hand that holds one end of the string while the beil is being whirled around on the other end is actually the site of the centripetal foxce fn the first place. But this force fis transmitted through the string to che ball; it is more convenfent to think of the string as exerting the inward force on the ball, while the ball exerts the outward force on che scring.

So, we have redefined centrifugal force. No longer is it a phony, fictional force erroneously conceived as befng applied to the ball. Now it is a real, outward-acting force applied to the string, owing its existence. to centripetal force and developing as a reaction to the inward force:

4

Before continuing, please turn to page 159 in the blue appendix.

You have now oompleted the study portion of Lesson 10 and your Siudy Guide Computer Card and $A V$ Computer Card should be propexly punched in accordance with your performance in this Lesson.

You should now proceed to complete your homework reading and problem assignment. The probiem solutions must be cleariy written out on $8 \frac{1}{2^{\prime \prime}} \mathrm{x}$ Li" ruled, white paper, and then submitted with your name, date, and identification number. Your instructor will grade your problem work in texms of an objective preselected scale on a Problem Evaluation Computer Card and add rhis resulr. to your compurer profile.

You are eligibie for the Post Test for this Lesson only aftex youx homework problem solutions have been submitted. You may then request the Pos: Test which is to be answered on a Post Test Computer Card.

Upon completion of tine Post Test, you may prepaze fox the next Lesson by requesting the appropriate
d. study guide
2. program controi matrix
3. set of computer cards for the lesson 4. auciio tape

If films or other visual aids are needed for this lesson, you will be so informed when you reach the point where they are required. Requisiticn these aids as you reach them.

Good Luck!

WORKSHEET

Please asten to Tape Segment I of Lesson 10 before starting to answer the questrons beiowo Use Computer Cara fomanswersa

QUESTIONS

- As you krown the earth revolves about the sun in sts yeariy perambuiations. If you wanted to desersee tine forees acting in thas systemn which one of the fonamm sing would you choose as your point of observation in order to estabish an outside frame of reterence?

$\stackrel{A}{4}$

C:A nearby stax.
The Mocr

2o rust betore the Apodio 8 astronates book or mor tae Mon, thex, spacecraft ofroled the Eapth in a tempom axy orbto To analyee the forces acting on the spaces craft whele orbeting,
A. the Sun would have been a satisiabetoy point of observation because at is motioniess an space.
B The Moon would have been a satisfactory point or observation because ar observatory soxid be set up there.
C Trie Sun wouid be satisfactory because at as "rixed" relative to both the Etrth and bhe speceoraft.
D The paanet Mars would be satrsloudopy because ct ss indedr reiative to the Eartino
E Nore of these answers is correct.

3o- Ons can bund up a set of consistent physhai ane based on mentaficeat force provided that one is

A Uside the framework of the rotating systemo
B outside the framework of the rotating systeli.
C donselous that centrifugal forse aots on be rotating partiole or body.
D Whatng to assug algebralo slgns to vectors. E: None ot these is correct.

> Please return now to page 5 ot
> the STUDY GUIDE

WORKSFEET

Please listen to Tape Segment 2 of Lesson 10 before starting to answer the questsons beiowo Use the Computer Cardfor answ wers.

QUESTIONS

4. A pumbisne passing through a horizonta plane makes an angle of
A 980° with the plane.
$\mathrm{B} 90^{\circ}$ wh the plane.
C Zero degrees with the piane.
$\mathrm{D} 90^{\circ}$ wh the verticato
E None of these answers is correet.
5. Asfde from the centripetal force of the strings another fore that acts on the whilling particle is gravitationo Which statement ${ }^{3}$ s true?

A Gravitation acts on the particie only if it is moving in a horizontal plane.
B Gravitation acts on the particie if it is moving in any pane.
C Gravitation acts on the particle only if it is moving ir a vertical plane.
D Regardiess of the piane in which it moves, the effect of gravitation on the centripetal force cequifed to keep the particie in an "orbetons "always che same.
E. None of chese answers is correct.
6. A horizontal onrese sis best for the cspoumetances de. scmubed an the STUDY GUTDE because

A $4 t$ is the easiest to observe as you whit the parbale eround your head.
B
in this kind of circle there will be less danger of the particle striking some nearby object.
C. in any other plane the particle may move. in an elliptical rather than a circular patho
D. onily In this kind of cilcle can the centripetal force be equal for all instantaneous positions of the particle.
E : None of these answers is correoto
Please retum now to page 10 of THE STUDY GUIDE。

WORKSHEET

Piease insten to Tape Segment 3 of Lesson 10 Defore starting to answer the $\mathrm{q} u$ usticns betow Use Computer Card．Tou answerso

Data Item As．The dxawing beiow is a dupitcate of fugure 10 ＊n the STUDY GUIDE for this Lesscmo

Data Item B：The planets on the Solar Systemo an randon ordew， are：Earth Pubon Saturn．Marso Mercuryo Tenus，Nep－ Gquen Jupt tery ana Unanuso

QUESTIONS

7．Fox a partiesemoving with unftoxm speed in a circe．e． whon one of the following statements is riue？

A．Centropetai force on the particze as proportonax to the tangential velootty all other quantites equa－
B Contortugal force aoting on the rotating part－
 We partheze。
C Centrpetal foree fs andependent or the mass of the rotating partlole。
D Centmpetal force is independent of the aúcus of the chale dersubed by the partucte。
E Centropetal force se inversedy proportonal to the radius of the ofrote described by the part－ さんも

8．If orbton madius were the ony factor eoverning vne magntude of centripetal foree ther which one of the planets woua be acted on by the Pargest．foget and whin the smallest？

A Largest：PIuto：smailest\％：Merouxyo
B Largest：Uranus：smailesta Jupiter．
C Langesti Eartho smailestio Venuso
D Lamgesto Meromys smapesti Pluteo
E None or the above is correct．

WORKSHEET

Please Iisten to Tape Segment 4 before starting to answer the questions below. Use the Computer Gard for answers.
Data Item A Centripetal force $=F=\frac{m v^{2}}{1}$.
Data Item B: Mass of $\alpha=$ partiole $=4$ times mass of proton and Centripetal force acting on amaritice movinis In same magnetic field as proton: $=2$ times force on proton.

QUESTIIONS

9. If the orbital radius of a proton in a given magnete fiea fs x^{\prime}, watorbitat radus would an a-particle assume if. ? Etmoved nto the same field at an sdentical speed?
A. 1,4

B 13
C. $x / 2$
D. 4 r

E $2 r$

$$
\Sigma
$$

$$
\begin{gathered}
\text { Please return now to page } 133 \\
\text { in the STUDY GUIDE }
\end{gathered}
$$

WORKSHEET

Please Irsten to Tape Segment 5 of Lesson 10 Defore startm ing to axswer the questions be"ow. Use Computer Cand ior answers.

Data Item A: Study the chart belowo

(2) Venus
6.1×1.0^{8}
$3.50 \times 10^{6} \quad 3.29 \times 10^{20}$
1.0×10^{6}
(5) Juptter
$70=10^{9}$
$2.31 \mathrm{~V} \times 20^{6}$
3.27×30^{23}
$5097 x-6$
(9) Uanss . 2.5×10^{9}
$0.68 \times 30^{6} \quad 582 \times-0^{24}$
20.6×6

One of the comumn above Lists the approximate orbis we.on Ltes of the planets shown.

QUESTITONS

 the planets shown?
A. A

B \quad B
$C \quad C$
D. D
Li. Jupiter is by far the mostansive planet in the solar System. Which of the columns above.lists the masses of the planets shown?

A A
B. B
\& $C \quad C$
D.D
E None of the columns Insts the masses of the pan ets.

Piease Iisten Eo Tape Segment 6 of Lesson 10 before staring to ariswer he questions below Use Computer Card for answers.

The diagram at the Left shows a small wood block resting on the surface of a slowly rotating phono turntade. Shown above the turntabis a mefer. ence point tabejed "A": below it is another reference point lamej ed obs. The turntebie islaratating chockwise as seeñ from above.

QUESTIONS
12. At the instant shown in the diagramg on what does the centrifuget force aet and toward which of the two refErence potitp?
A. on the turntableg toward point A.
B On the turntable, toward point $B_{\text {. }}$.
C. On the wood blockg toward point A.
D On the wood biock, toward point B.
E None of these is correct.
130. Suppose the tumtabie were rotating counterelockwse histead of cookwise. Which one of the followng moud be affected by this change of direction?
A. The wood block.

B The surface of the turntahie.
C The centripetal force
D The centri fugal force.
E None of these.

Please go directly to page 160 of the STUDY GUIDE after answer ing the questions above.

WORKSHEET

Frgat assen to Tape Segment of Lesson 10. You whe a so
 EMATON TN CIROULAR MOTION as drectea on the audio tapeo

La a For for see the diagrams" beowo.

 auther on sach questron below:
A. Gageras
B radius:
C parailel:
D perpenofoutar

QUESTIONS

 rexaty tector aiwas has the same direction as the a.c.-. o the ofrexe at that point.
 As \quad wo the tenonty reatero
c_{0} A. Etery nstant; the centripetal acceleration teetot, wes atong a ar one circle of rotation.

> Piease go to page 153 of the
> STUDY GUIDE.

AMP LESSON 10

HOMEWORK PROBEEMS

Ir What is the centripetal acceleration of a car whach moves around adefroutar section of a road having a radius of 150 ft at a constant spead of 75 ft/sec?
2. A ball on a stritig is whined in a homisontal oxrole of radius 2 fte What must tre the speed of the bail, if its centripetait gcoelemation is to be equal to g ? (Take $g=$ $32 \mathrm{ft} / \mathrm{sec} / \mathrm{sec})$.
3. What centripetal force is needed to keep a 2 mog mass moting at a constant speed of 4 m/sec in a circle having a radtuk of 4 m?
4. A force of 10 nt applaed to one end of a comd keeps an object thed to the other end moving at a speed of $2 \mathrm{~m} / \mathrm{sec}$ In a hotrontan cirole of 8 m raduts What 1 s the mass of the object?
5. At a pont 6%. 10^{6} m rrom the center of the Earth, g Is approximately $9.0 \mathrm{~m} / \mathrm{sec} / \mathrm{sec}$. What veloot ty must be giver to an Earth satellite to send it into orbit at this distancer (Assume a circular orbit).
6. A student swings a mass of 100 grams tied to one end of a cond In a homiontal circle of radius 50 cm so that its tangential velocity is io0 cm/sec. Calculate the centripetal force acting on the mass in newtons.
fr What ís the csn thetal force acting on each kiligram of an efrpane that is turning at, $200 \mathrm{~m} / \mathrm{sec}$ in a horien zontal cincle of nadus 10,000 , n ?
8. Using the figures given below, estimate the centrupetal force acting on the Eanth as a result of its rotation aroma the sua:

Mass of Earth $=660 \times 10^{24} \mathrm{~kg}$
Reatus of Earth orbjt $=1.5 \times 10^{11} \mathrm{~m}$ Mime required for Earth to complete one

$$
\operatorname{orbtt}=3 \mathrm{~s} 2 \mathrm{x} 20^{7} \mathrm{sec}
$$

(Hintr For an objeot moving in a circie, $v=\frac{2 \pi r}{T}$ whoh $v=$ targential velocity, r a cadis or rotationy and $T=$ time for one gevolution.

